Teoria da Regressão

Prova 2.

- 1. Considere o modelo de regressão com p termos especificado corretamente, incluindo o intercepto. Utilizando as suposições usuais sob ϵ , mostre que
- a) $Var(\hat{\mathbf{y}}) = \sigma^2 \mathbf{H};$

b)
$$\sum_{i=1}^{n} Var(\hat{y}_i) = p\sigma^2$$

- 2. Responda as questões selecionadas abaixo do livro Modelos de Regressão com apoio computacional(referência n.7 da ementa) Capítulo 1 seção 1.11 questões 11, 18 e 19.
- 3. Em 48 estados americanos foram registradas as seguintes variáveis taxa(taxa de combustível no estado), licença(proporção de motorista licenciados), renda (renda per-capita), estradas (ajuda federal para as estradas) e consumo (consumo de combustível por habitante). O interesse é explicar o consumo de combustível pelas variáveis taxa, licença, renda e estradas.
- (a) Construa os gráficos de dispersão convinientes.
- (b) Ajuste um modelo normal linear para explicar o consumo contra as demais variáveis selecionando as variáveis explicativas que contribuem significamente para o modelo. Interprete os diferentes parâmetros do modelo.
- (c) Estime os parâmetros do modelo e apresente os respectivos erros padrões.
- (d) Avalie a qualidade do ajuste do modelo.
- (e) Construa o intervalo de confiança para consumo médio e vitórias segundo um conjunto de valores das explicativas a sua escolha.
- (f) Apresente um conclusão que evite o jargão estatístico.
- (g) Faça uma análise de resíduo e diagnóstico completa.

ME	9.00	0.525	3571	1976	541
VT	9.00	0.580	3865	1586	561
RI	8.00	0.544	4399	431	410
NY	8.00	0.451	5319	11868	344
PΑ	8.00	0.529	4447	8577	464
TN	8 00	0.530	4391	5939	580

ΜI	7.00	0.574	4817	6930	525
MN	7.00	0.608	4332	8159	566
MO	7.00	0.572	4206	8508	603
\mathtt{SD}	7.00	0.724	4716	5915	865
KS	7.00	0.663	4593	7834	649
MD	9.00	0.511	4897	2449	464
$\mathtt{W}\mathtt{V}$	8.50	0.551	4574	2619	460
SC	8.00	0.548	3448	5399	577
FL	8.00	0.563	4188	5975	574
\mathtt{TN}	7.00	0.518	3640	6905	571
${\tt MS}$	8.00	0.578	3063	6524	577
LA	8.00	0.487	3528	3495	487
\mathtt{TX}	5.00	0.566	4045	17782	640
ID	8.50	0.663	3635	3274	648
CO	7.00	0.626	4449	4639	587
ΑZ	7.00	0.603	4300	3635	632
NV	6.00	0.672	5215	2302	782
OR	7.00	0.623	4296	4083	610
NH	9.00	0.572	4092	1250	524
MA	7.50	0.529	4870	2351	414
CT	10.00	0.571	5342	1333	457
NJ	8.00	0.553	5126	2138	467
ОН	7.00	0.552	4512	8507	498
IL	7.50	0.525	5126	14186	471
WI	7.00	0.545	4207	6580	508
IA	7.00	0.586	4318	10340	635
ND	7.00	0.540	3718	4725	714
NE	8.50	0.677	4341	6010	640
DE	8.00	0.602	4983	602	540
VA	9.00	0.517	4258	4686	547
NC	9.00	0.544	3721	4746	566
GA	7.50	0.579	3846	9061	631
KY	9.00	0.493	3601	4650	534
AL	7.00	0.513	3333	6594	554
AR	7.50	0.547	3357	4121	628
OK	6.58	0.629	3802	7834	644
MT	7.00	0.586	3897	6385	704
WY	7.00	0.672	4345	3905	968
MN	7.00	0.563	3656	3985	699
UT	7.00	0.508	3745	2611	591
WA	9.00	0.571	4476	3942	510
CA	7.00	0.593	5002	9794	524

Estes dados podem ser encontrados em http://www.ime.usp.br/ $\sim\!\!$ giapaula/reg2.dat.

4. Considere o sistema $\mathbf{A}\mathbf{X}=\mathbf{y}$ e seja \mathbf{A}^- uma inversa generalizada de $\mathbf{A}.$ Mostre que

- a) AA^- é idempotente.
- b) Uma condição necessária e suficiente para que $\mathbf{A}\mathbf{x} = \mathbf{y}$ seja consistente é que $\mathbf{A}\mathbf{A}^{-}\mathbf{y} = \mathbf{y}$.
- c) Uma solução geral do sistema consistente $\mathbf{A}\mathbf{x} = \mathbf{y}$ é dada por $\mathbf{x} = \mathbf{A}^{-}\mathbf{y} + (\mathbf{I} \mathbf{A}^{-}\mathbf{A})\mathbf{z}$, em que $\mathbf{z} \in \mathbb{R}$ é um vetor arbitrário; além disso, toda solução do sistema tem essa forma.
- 5. Considere o modelo $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}$ i = 1, 2, j = 1, 2, k = 1, 2.
- a) Escreva $\mathbf{X}^T\mathbf{X}$, $\mathbf{X}^T\mathbf{y}$ e as equações normais.
- b) Encontre o conjunto de funções estimáveis linearmente independentes.
- c)Mostre que $H_0: \alpha_1 = \alpha_2$ é testável.
- 6. Utilizando a notação usual, considere o modelo linear

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix} \quad = \begin{pmatrix} E(y_{11}) \\ E(y_{12}) \\ E(y_{21}) \\ E(y_{22}) \end{pmatrix}$$

- (i) Expresse os parâmetros do modelo em termos dos valores esperados $E(y_{ij})$.
- (ii) Repita o procedimento do item anterior sob as restrições

$$a)\alpha_1=0$$

$$b)\alpha_1 + \alpha_2 = 0$$

(iii) Repita o procedimento agora sob as reparametrizações

a)
$$\beta_1 = \mu + \alpha_1, \beta_2 = \mu + \alpha_2$$

b)
$$\beta_1 = \mu, \beta_2 = \mu + \alpha_1$$

Interprete os parâmetros em cada caso.

- 7. Considere o modelo de regressão linear simples $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, em que a variância de ϵ_i é proporcional a x_i^2 , isto é, $Var(\epsilon) = \sigma^2 x_i^2$. Suponha que se use a transformação y' = y/x e x' = 1/x. a) Esta transformação estabiliza a variância? b) Que relação há entre os parâmetros do modelo original e do modelo transformado? c) Suponha que nós usamos o método de mínimos quadrados ponderados com pesos $v_i = x_i^2$
- 8. Uma escola avalia o seu curso através de um questionário com 50 perguntas sobre diversos aspectos de interesse. Cada pergunta tem uma resposta numa escala de 1 a 5, onde a maior nota significa melhor desempenho. Para cada aluno é então encontrada a nota média. Os dados abaixo representam os resultados obtidos com amostras de alunos dos três períodos de funcionamento da escola.

	Período	
Manhã	Tarde	Noite
4,2	2,7	4,6
4,0	2,4	3,9
3,1	2,4	3,8
2,7	2,2	3,7
2,3	1,9	3,6
3,3	1,8	3,5
4,1	3,4	2,8

Faça uma análise de dados (comparando entre as opiniões dos alunos dos 3 periodos) utilizando cada um dos 4 modelos (parametrizações) apresentados em classe (médias, Posto incompleto, desvios médio, casela de referência). Caracterize \mathbf{y} , \mathbf{X} e interprete os parâmetros. No caso do modelo de Posto incompleto, utilize uma matriz $(\mathbf{X}^t\mathbf{X})^-$ no lugar da $(\mathbf{X}^t\mathbf{X})^{-1}$ de modo que $(\mathbf{X}^t\mathbf{X})(\mathbf{X}^t\mathbf{X})^-(\mathbf{X}^t\mathbf{X}) = (\mathbf{X}^t\mathbf{X})^-$. Essa matriz não é única e é denominada de inversa generaliza de $(\mathbf{X}^t\mathbf{X})$. Mostre que $\tilde{\boldsymbol{\beta}} = (\mathbf{X}^t\mathbf{X})^-\mathbf{X}^t\mathbf{y}$ é uma solução do sistema $(\mathbf{X}^t\mathbf{X})\boldsymbol{\beta} = \mathbf{X}^t\mathbf{y}$ e $SQReg = \mathbf{y}^t\mathbf{X}(\mathbf{X}^t\mathbf{X})^-\mathbf{X}\mathbf{y}$ é invariante a escolha da inversa generalizada. Faça uso de pelo menos um pacote estatístico, descrevendo o tipo de modelo(parametrização) utilizado.

9. Os dados (hipotético) abaixo são provenientes de um plano experimental completamente casualizado cujo objetivo é o desenvolvimento de um novo medicamento de alívio de dor. Um experimento envolveu 9 voluntários, e a quantidade de dois ingredientes ativos (fator A e fator B). Na composição do medicamento, os ingredientes tem variado em 2 níveis para o fator A e 3 níveis para o fator B. Aleatorização tem usada selecionando 3 voluntários para 1 cada um dos 6 tratamentos no estudo (a). Três situações diferentes de estudos aconteceram. Os dados em horas de alivio da dor foram anotados abaixo

a)balanceado

A	В		
	1	2	3
	7	8	2
1	9	6	4
	8	9	2
	5	14	20
2	7	15	22
	4	19	23

b)desbalanceado

A	В		
	1	2	3
	7	8	2
1	9		4
	8	9	2
	5	14	20
2	7	15	22
		19	23

c)incompleto

A	В		
	1	2	3
	7	8	2
1	9		4
	8		
	5	14	
2	7	15	
		19	

Para cada caso responda as perguntas abaixo:

- (i) Explique a diferença de cada situação.
- (ii) Obtenha os efeitos principais A e B.
- (iii) Verifique se a interação está presente no modelo.

- (iv) Teste os efeitos principais.
- ((vi) Construa a tabela da ANOVA e interprete os resultados.
- 10. No modelo

$$Y_1 = \theta_1 + \theta_2 - 2\theta_3 + \epsilon_1$$

$$Y_2 = \theta_1 - \theta_2 + \epsilon_2$$

$$Y_3 = \theta_2 - \theta_3 + \epsilon_3$$

com $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2 i, j = 1, 2, 3$. Prove que

- $\mathbf{a})\theta_1-\theta_3$ é estimável
- b) θ_1 não é estimável
- c) Admitindo que $\theta_1+\theta_2+\theta_3=0$, prove que θ_1 se torna estimável.