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Abstract: In this paper we derive approximate formulae for the skewness and kurtosis of the maximum

likelihood estimator in the one-parameter exponential family. The key idea underlying these formulae is that

they indicate when the normal approximation usually employed with maximum likelihood estimators can be

misleading in small samples. We apply our main result to a number of special distributions of this family.

We also use a graphical analysis to examine how the skewness and kurtosis vary with the true value of the

parameter in some special cases.
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1 Introduction

The assumption of symmetry plays a crucial role in many statistical procedures. The notion

of skewness of a distribution is related to a symmetry property. The most commonly used measure

of skewness is the standardized third cumulant. In fact, the classical tests of symmetry make use

of the standardized third sample cumulant measure and a departure from the normal value of zero

then indicates skewness. Intuitively, we think of a distribution as being skewed if it systematically

deviates from symmetrical form. Kurtosis is a measure of a type of departure from normality. The
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kurtosis is given by the standardized fourth cumulant which equals zero for any normal distributions.

Often “peaked” (as compared with normal) distributions have positive kurtosis, and flat-topped-

ones have negative kurtosis.

Any distribution expressed in standardized form has zero mean and unit variance. The

standardized distributions can be readily compared in regard to form, its departure from symmetry

(skewness) and other qualities, though not of course in regard to mean and variance. Commonly

used indices of the shape of a distribution are the moment ratios, namely the indices of skewness γ1

and kurtosis γ2 defined by γ1 = κ3/κ
3/2
2 and γ2 = κ4/κ

2
2, respectively, where κr is the rth cumulant

of the distribution. The indices γ1 and γ2 are widely used as measures of departure from normality

since γ1 = γ2 = 0 for the normal distribution. These univariate measures are constructed such that

they are invariant under change of scale and origin, γ1 is a function of κ3, the lowest cumulant

measuring symmetry and γ2 is a function of κ4, the lowest cumulant measuring “peakedness”.

When γ1 > 0 (γ1 < 0) the distribution is positively (negatively) skewed and will have a longer

(shorter) right tail and a shorter (longer) left tail. Clearly, if the distribution is symmetrical, γ1

vanishes and therefore its value will give some indication of the extent of departure from symmetry.

According to van Zwet (1964), if we transform Y to ϕ(Y ) then we increase right-skewness if ϕ is

convex, while we decrease right-skewness if ϕ is concave. Therefore, ϕ(Y ) will have a greater or

smaller skewness coefficient than Y if ϕ is convex or concave. Distributions for which γ2 = 0 are

called mesokurtic. The distributions for which γ2 > 0 are called leptokurtic and those for which

γ2 < 0 are called platykurtic. The leptokurtic distribution has a sharper peak at the mode and

more extended tails, whereas the platykurtic distribution is characterized by a flatter top and more

abrupt terminals than the normal curve. It is impossible to have γ2
1 > 2 + γ2 and thus γ2 ≥ −2

always. We note that γ2 can be interpreted as a nonnormality adjustment for the variance of

(Y − E(Y ))2 since V ar{(Y − E(Y ))2} = κ4 + 2κ2
2 = 2κ2

2(1 + γ2/2). The moment ratios γ1 and γ2

have the same values for any linear function a + bY with b > 0. When b < 0, the absolute values

are not altered, but ratios of odd order cumulants have their signs reversed.

Consider a general uniparametric model f(y; θ) indexed by an unknown scalar parameter

θ ∈ Θ, where Θ is an open set of IR. Let y be the data vector of n observations which are

assumed independent identically distributed with log likelihood for a single observation defined by

l(θ; y) = log f(y; θ). We know that the maximum likelihood estimator (MLE) θ̂ of an unknown

scalar parameter θ in regular problems is asymptotically distributed as N(θ, (nκ−1
θ,θ)) with an error
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of order O(n−1/2), where κθ,θ = E{−d2l(θ;y)
dθ2 } is the expected information for θ. Our main purpose

here is to obtain simple asymptotic formulae for the indices γ1(θ̂) and γ2(θ̂) of the distribution of the

MLE θ̂ in one-parameter exponential family models up to orders n−1/2 and n−1, respectively. The

values of the indices γ1(θ̂) and γ2(θ̂) can be used as measures of nonnormality of the distribution of

θ̂ since they vanish when θ̂ is normally distributed. These include many important and commonly

used distributions and only require knowledge of simple functions and their first few derivatives

with respect to θ. It is possible to use the values of γ1(θ̂) and γ2(θ̂) to examine for what exponential

models the distribution of θ̂ is closer to the normal distribution. The dependence of the finite-sample

distribution of the MLE θ̂ on the sample size and on the value of θ is assessed by numerical and

graphical inspection for some of the distributions considered.

The plan of the paper is as follows. In Section 2 we give simple asymptotic formulae for

the standardized cumulants γ1(θ̂) and γ2(θ̂) in one-parameter exponential family models. We also

discuss the effects that these standardized cumulants have on coverage of confidence intervals for θ

and review two different higher-order refinements to obtain highly accurate small-sample confidence

intervals for this parameter. However, the method employed here is both simpler and more direct

than higher-order methods which give near-exact results. In Section 3 we present a number of

special cases thus showing that our main result covers a wide range of important distributions.

A graphical analysis that shows the dependence of the skewness γ1(θ̂) and kurtosis γ2(θ̂) on θ is

performed in Section 4. Concluding comments are in Section 5.

2 Basic Formula

Consider a general uniparametric model indexed by an unknown scalar parameter θ. Suppose

there are n independent and identically distributed observations y1, . . . , yn and define the log likeli-

hood function for a single observation by l(θ) = l(θ; y). We assume that l(θ) satisfies the regularity

conditions stated in Rao (1973, p.364) and Serfling (1980, p.144). The derivatives of the log likeli-

hood l(θ) are denoted by Uθ = dl(θ)/dθ, Uθθ = d2l(θ)/dθ2, etc., and we use the following notation

for their cumulants (Lawley, 1956): κθθ =E(Uθθ), κθθθ =E(Uθθθ), κθ,θ = E(U2
θ ), κθ,θθ = E(UθUθθ),

κθθ,θθ = E(U2
θθ) − κ2

θθ, κθθθθ =E(Uθθθθ), κθ,θ,θθ = E(U2
θUθθ) − κθ,θκθθ, κθ,θ,θ,θ = E(U4

θ ) − 3κ2
θ,θ and

κθ,θθθ =E(UθUθθθ).

We denote the derivatives of the cumulants with superscripts as κ
(θ)
θθ = dκθθ/dθ, etc. All
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κ′s refer to a single observation and are of order O(1). Under these regularity conditions the

asymptotic distribution of the MLE θ̂ is normal N(θ, n−1κ−1
θ,θ) with an error of order O(n−1/2).

The κ′s satisfy certain Bartlett identities such as κθ,θ =−κθθ, κθ,θ,θ =−κθθθ− 3κθ,θθ = 2κθθθ−3κ
(θ)
θθ ,

κθ,θθ =κ
(θ)
θθ −κθθθ , κθ,θ,θ,θ =−κθθθθ−4κθ,θθθ−6κθ,θ,θθ −3κθθ,θθ = −3κθθθθ + 8κ

(θ)
θθθ− 6κ

(θθ)
θθ + 3κθθ,θθ,

κθ,θ,θθ =κθθθθ−2κ
(θ)
θθθ+κ

(θθ)
θθ −κθθ,θθ , etc. (see Lawley, 1956).

Let µr(θ̂) = E{(θ̂ − θ)r} for r = 3 and 4 be the third and fourth central moments of θ̂,

respectively. Using the general formulae for µ3(θ̂) and µ4(θ̂) given by Shenton and Bowman (1963,

equations (17c)-(17d); 1977) and some Bartlett identities, which usually simplify the computation

of the κ′s, we can express the third and fourth central moments of θ̂ to orders n−2 and n−3,

respectively, by

µ3(θ̂) =
3κ

(θ)
θθ − κθθθ

n2κ3
θ,θ

(1)

and

µ4(θ̂) =
3

n2κ2
θ,θ

− 9κθ,θ,θ,θ + 36κθ,θ,θθ + 10κθ,θθθ

n3κ4
θ,θ

+
54κ

(θ)2

θθ − 3κ2
θθθ − 24κθθθκ

(θ)
θθ

n3κ5
θ,θ

. (2)

Equations (1) and (2) are in agreement with the formulae in Peers and Iqbal (1985) who give

the asymptotic expansions of the second, third and fourth cumulants of the MLE for a general

p−dimensional model, p > 1.

The third cumulant of θ̂ is simply κ3(θ̂) = µ3(θ̂) whereas the fourth cumulant of θ̂ to order

O(n−3) is given by the last two terms in equation (2) since κ4(θ̂) = µ4(θ̂)−3V ar(θ̂)2. Our aim here

is to give formulae for the skewness κ3(θ̂) and kurtosis κ4(θ̂) of θ̂ in the one-parameter exponential

model which are algebraically more appealing for applications than the general formulae (1) and

(2). Unlike these formulae, our results can be readily used by applied researchers since they only

require trivial operations on suitably defined functions and their derivatives.

Let Y1, . . . , Yn be a set of n independent and identically distributed random variables with

probability or density function in the one-parameter exponential family, that is,

f(y; θ) =
1

ζ(θ)
exp{−α(θ)d(y) + v(y)}, (3)

where θ is a scalar parameter, α(.), ζ(.), d(.) and v(.) are known functions and θ ∈ Θ, Θ being

an open set of IR. We also assume that the support of f(y; θ) does not depend on the unknown

parameter θ and that α(.) and ζ(.) have continuous first four derivatives with respect to θ, and

that ζ is positive valued. Further, we require that dα(θ)/dθ and dβ(θ)/dθ are different from zero
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for all values of θ ∈ Θ, where β(θ) = E {−d(y)} is given by β(θ) = dζ(θ)
dθ (ζ(θ)dα(θ)

dθ )−1. From now on

we omit the dependence of α(θ), ζ(θ) and β(θ) on θ with primes denoting derivatives with respect

to the unknown parameter θ.

Many commonly used distributions in applied research are special cases of (3). Also, this

family of distributions enjoys important mathematical properties; see Bickel and Doksum (1977)

and Barndorff-Nielsen (1978). As is well known exponential family models allow for a unified

treatment of several important distributions and have a number of interesting statistical properties

for estimation, testing and inference problems.

Let y1, . . . , yn be the data set of n observations from (3). The maximum likelihood estimator

(MLE) θ̂ of θ comes from n−1 ∑n
i=1 d(yi) = −β(θ̂) if the solution to this equation belongs to Θ.

For several important distributions in (3) the MLE θ̂ cannot be expressed as an explicit function

of the data. To circumvent this problem we usually use iterative techniques to derive approximate

solutions to the exact MLE.

Bias correction for the MLE θ̂ is discussed by Firth (1993). Ferrari et al. (1996) obtained

the bias and variance of the MLE θ̂ in the exponential family (3) up to order n−2. Here, “to order

n−p” means that terms of order smaller than n−p are neglected. The expressions for the bias and

variance of θ̂ only require knowledge of α(θ) and ζ(θ) and their first five derivatives with respect

to θ. Cribari-Neto et al. (1998) give closed-form expressions for the second and third order biases

of θ̂ for a number of distributions in (3). Cordeiro et al. (1999) proposed a pivotal quantity which

is a function of θ̂ and whose distribution is standard normal up to order n−3/2. The proposed

pivot takes the form of a polynomial transformation of the standardized MLE of at most third

degree. In this section we give asymptotic formulae for the standardized skewness and kurtosis

of the distribution of the MLE θ̂ in the one-parameter exponential family (3) up to orders n−1/2

and n−1, respectively. In the next section we use these formulae to obtain approximate closed-form

expressions for the skewness and kurtosis of θ̂ for a number of important distributions in this family.

Now, the log likelihood l(θ) = l(θ; y) for the model (3) is l(θ) = −α(θ)d(y) − log ζ(θ) + v(y).

From the first four derivatives of l(θ) with respect to θ and using the Bartlett identities we obtain:

κθ,θ = α′β′, κθθθ = −2α′′β′ − α′β′′, κ
(θ)
θθ = −α′′β′ − α′β′′, κθ,θθ = α′′β′, κθ,θ,θ = α′β′′ − α′′β′,

κθ,θθθ = α′′′β′, κθ,θ,θθ = α′′β′′−α′′2β′/α′ and κθ,θ,θ,θ = −α′′′β′−3α′′β′′ +α′β′′′ +3α′′2β′/α′. Finally,
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replacing these cumulants in the expressions (1) and (2), we get after some algebra

κ3(θ̂) =
−2α′β′′ − α′′β′

n2(α′β′)3
(4)

and

κ4(θ̂) =
27(α′β′′)2 − 6(α′′β′)2 + 24α′′α′β′′β′

n3(α′β′)5
− α′′′α′β′ + 9α′′α′β′′ + 9α′2β′′′ − 9α′′2β′

n3α′5β′4
. (5)

More convenient quantities than κ3(θ̂) and κ4(θ̂) for certain purposes are the standardized

cumulants γ1(θ̂) = κ3(θ̂)/V ar(θ̂)
3/2 and γ2(θ̂) = κ4(θ̂)/V ar(θ̂)

2, where V ar(θ̂) = 1
nα′β′ is the

asymptotic variance of θ̂. From (4) and (5) we then obtain the standardized cumulants γ1(θ̂) and

γ2(θ̂) to orders n−1/2 and n−1, respectively, as

γ1(θ̂) =
−2α′β′′ − α′′β′√
n(α′β′

√
α′β′)

(6)

and

γ2(θ̂) =
27(α′β′′)2 + 3(α′′β′)2 + 15α′′α′β′′β′ − α′β′(α′′′β′ + 9α′β′′′)

n(α′β′)3
. (7)

Some features of the formulae (4) − (7) are noteworthy. First, the asymptotic expressions for the

skewness and kurtosis of the distribution of the MLE θ̂ are now very easy to compute for any

exponential family model. They depend on the model through the functions α(θ) and β(θ) and

their first three derivatives with respect to θ. Second, although the calculation of µ3(θ̂), µ4(θ̂),

γ1(θ̂) and γ2(θ̂) is straightforward for any distribution in (3), it is rather difficulty to explain the

general structures of their formulae. The main difficulty in interpreting these formulae is that their

individual terms are not invariant under reparameterization and therefore they have no geometric

interpretation which is independent of the coordinate system chosen. Third, by entering equations

(6) and (7) into a computer algebra system such as MATHEMATICA (Wolfram, 1996) or MAPLE

(Abell and Braselton, 1994), one can obtain the standardized cumulants γ1(θ̂) and γ2(θ̂) for several

models with minimal effort (see Section 3). Further, a simple application of our method can be

performed easily by hand using directly equations (6) and (7), although application of near-exact

higher-order methods usually require computer algebra. Fourth, when α(θ) = θ, which corresponds

to the natural exponential family, γ1(θ̂) and γ2(θ̂) reduce to

γ1(θ̂) =
−2β′′

β′
√
nβ′

(8)

and

γ2(θ̂) =
27β′′2 − 9β′β′′′

nβ′3
, (9)
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where β(θ) = d log ζ(θ)/dθ. Finally, if the distribution of θ̂ is approximately normal, both coef-

ficients γ1(θ̂) and γ2(θ̂) should be close to zero and departure from this value is evidence to the

contrary.

Often one is interested in the estimation of a function of θ, say τ = g(θ), which does not

depend on n. One can reparameterize the model in terms of τ and then use the results (6)− (7) to

obtain the skewness γ1(τ̂) and kurtosis γ2(τ̂) of the distribution of theMLE τ̂ = g(θ̂). Alternatively,

we can express γ1(τ̂) and γ2(τ̂) as functions of the standardized cumulants γ1(θ̂) and γ2(θ̂) of θ̂.

After some algebra, we obtain

γ1(τ̂) = γ1(θ̂) +
3τ ′′√
nα′β′

and

γ2(τ̂) = γ2(θ̂) +
−42τ ′′(α′β′′) − 18τ ′′(α′′β′) + 25τ ′′2(α′β′) + 10τ ′′′τ ′(α′β′)

n(α′β′)2
.

Formulae (6) and (7) are useful in telling when it is safe to base inference on the asymptotic

normal distribution of the MLE θ̂ and to compute first-order confidence intervals for θ from

θ̂ ± 1.96(nκθ,θ)
−1/2. In real-life situations, if the values of the skewness and kurtosis indices γ1(θ̂)

and γ2(θ̂) are large, the first-order normal approximation for θ̂ will be probably poor in samples

of small to moderate size, and therefore may deliver inaccurate inference. In these cases, we have

to work with second-order distributional refinements for the cumulative distribution function of

the MLE θ̂. Two different methods of adjustments to improve the asymptotic standard normal

approximation to the distribution of θ̂ are considered below. Despite their usefulness, the improved

intervals based on these methods entail more algebra than those intervals based on the asymptotic

normal N(0, κ−1
θ,θ) distribution of

√
n(θ̂ − θ).

2.1 The Edgeworth expansion

The second-order asymptotic distribution theory associated with Edgeworth expansion for

the distribution function of θ̂ is summarized by Hill and Davis (1968). Provided some regularity

conditions hold, they showed that the distribution function of the pivot statistic S =
√
n(θ̂−θ)κ1/2

θ,θ

is given to order O(n−1) by

P (S ≤ z; y) = Φ(z) − φ(z) [{6η1 + η3h2(z)} /6 + {360η2h1(z) + 30η4h3(z) + η6h5(z)} /24] , (10)

where Φ(.) and φ(.) are the cumulative distribution function and the density function of the standard

normal variate, respectively, and hj(z) is the jth degree Hermite polynomial. The coefficients in
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(10) are given by η1 = (nκθ,θ)
1/2B1(θ̂), η2 = nκθ,θ{V2(θ̂) + B1(θ̂)

2}, η3 = γ1(θ̂), η4 = γ2(θ̂) +

4(nκθ,θ)
1/2B1(θ̂)γ1(θ̂) and η6 = 10γ1(θ̂)

2, where B1(θ̂) and V2(θ̂) are the n−1 and n−2 terms in

the bias and variance of θ̂, respectively. Expressions for B1(θ̂) and V2(θ̂) under the one-parameter

exponential model (3) are given by Ferrari et al. (1996). The coefficients η1 and η3 are of order

O(n−1/2) whereas η2, η4 and η6 are of order O(n−1).

Confidence intervals for θ computed from (10), which take into account the formulae of

B1(θ̂), V2(θ̂), γ1(θ̂) and γ2(θ̂), can be viewed as meaningful improvements over the usual confidence

intervals {θ; | S |≤ z}, where z is the appropriate upper point of a standard normal distribution.

Equation (10) shows clearly that the bias term B1(θ̂) and skewness γ1(θ̂) affect both the corrected

terms of orders O(n−1/2) and O(n−1) in the distribution function of S. However, the kurtosis γ2(θ̂)

only affects the correction term of order O(n−1). It is then clear from the degrees of the polynomials

in (10) that the inference based on the asymptotic normal distribution of θ̂ can be innacurate in the

tails of the distribution of S, when | z | is not very small, if any of the basic quantities B1(θ̂), γ1(θ̂)

and γ2(θ̂), which correspond to terms involving z3 and z5, is large.

2.2 The modified direct likelihood

We now outline the modified direct likelihood method that yields approximate interval prob-

abilities of one-dimensional distribution functions. Under a one-dimensional exponential family

model, the cumulative distribution function of θ̂ can be approximated by (Barndorff-Nielsen, 1990;

Fraser, 1990; Barndorff-Nielsen and Cox, 1994, Chapter 6)

P (θ̂ ≤ θ; y) = Φ(r) + φ(r)(
1

r
− 1

u
) +O(n−3/2), (11)

where r is the modified direct likelihood given by r = sgn(θ̂ − θ)
[

2
{

l(θ̂; y) − l(θ; y)
}]1/2

. Here

l(θ; y) is the log likelihood function and the likelihood quantity u is easily calculated from

u =

{

∂l(θ; y)

∂y

∣

∣

∣

θ̂
− ∂l(θ; y)

∂y

}

k(θ̂)−1j(θ̂)1/2,

where j(θ) = −∂2l(θ;y)
∂θ2 is the observed information and k(θ) = ∂2l(θ;y)

∂θ∂y .

The derivation of (11) using saddlepoint techniques is reviewed in Barndorff-Nielsen and

Cox (1994, Chapter 6). Note that r is the signed square root of the log likelihood ratio statistic,

and u is the standardized MLE. Here, u is the Wald statistic only if the exponential family

is a natural one, i.e. if α(θ) = θ and d(y) = y!. To first order both r and u have standard
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normal distributions and the correction term involving φ(.) in (11) provides the improvement from

O(n−1/2) to O(n−3/2). Approximation (11) can be unstable near θ = θ̂ and some care must be

taken if the distribution function is to be computed over its entire domain. Confidence intervals

calculated from (11) are highly accurate in possibly very small samples and they typically have much

better coverage than those based on the asymptotic distribution of θ̂. For model (3) we obtain r =

sgn(θ̂ − θ)

[

{

α(θ) − α(θ̂)
}

∑n
i=1 d(yi) + n log

{

ξ(θ)

ξ(θ̂)

}]

, u = {α(θ) − α(θ̂)}∑n
i=1 d

′(yi)k(θ̂)
−1j(θ̂)1/2,

k(θ) = −α′(θ)
∑n

i=1 d
′(yi), and j(θ) = nα′(θ)β′(θ), where d′(y) = ∂d(y)

∂y .

3 Special Cases

In this section, we use equations (6) and (7) to obtain approximate expressions for the

skewness γ1(θ̂) and kurtosis γ2(θ̂) of the distribution of the MLE θ̂ for a number of important

distributions that belong to the one-parameter exponential family (3). Twelve special distributions

are considered and we give closed-form expressions for the standardized third and fourth cumulants

of the MLE θ̂. The MAPLE code used to perform the algebraic calculations is available on a web

page (www.de.ufpe.br/∼ cysneiros/) so it can be download if anyone wants it. Distributions (i)

through (iii) involve discrete random variables whereas continuous random variables are considered

in cases (iv) through (xii). The special cases listed below have a wide range of practical applications

in various fields such as engineering, biology, medicine, economics, among others (Johnson, Kotz

and Balakrishnan, 1994, 1995; Johnson, Kotz and Kemp, 1992). We considered below some

distributions whose values of γ1(θ̂) and γ2(θ̂) do not depend on θ and some distributions for which

these values are very complicated functions of θ. The formulae derived which yield constants are

compared in a chart given in Figure 1. For those distributions whose values of γ1(θ̂) and γ2(θ̂) are

complicated functions of θ, we show graphically the dependence of these indices on θ in Section 4.

(i) Truncated Poisson (θ > 0, y = 1, 2, . . .): α(θ) = − log θ, ζ(θ) = eθ(1− e−θ), d(y) = y, v(y) =

− log(y!), θ̂ is obtained as solution of the equation 1/{θ̂(1 − e−θ̂)} = 1/y,

γ1(θ̂) =
(−1 + e−θ) {(2θ2 − 3θ + 2)e−θ + (2θ2 + 3θ − 1)e−2θ − 1}

√

−n (e−θ θ − 1 + e−θ)3θ (−1 + e−θ)2
,

γ2(θ̂) = −{1 + e−θ(−4 + 28θ − 42θ2 + 9θ3) + e−2θ(6 − 84θ + 121θ2 − 39θ3 + 18θ4)

+ e−3θ(−4 + 84θ − 116θ2 − 27θ3 + 18θ4) + e−4θ(1 − 28θ + 37θ2 + 57θ3 + 18θ4)}
/

{θ n (e−θ θ − 1 + e−θ)3}.
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(ii) Logarithmic series (0<θ<1, y=1, 2, . . .): α(θ)=−log θ, ζ(θ)=− log(1−θ), d(y) = y, v(y) =

− log y, θ̂ is obtained as solution of the equation y = −θ̂/{(1 − θ̂) log(1 − θ̂)},

γ1(θ̂) = − log(1 − θ) (−1 + θ) {3 θ2 log(1 − θ) + 5 θ log2(1 − θ) + 4 θ2 + 3 θ log(1 − θ) − log2(1 − θ)}
√

−n
{

θ + log3(1 − θ)
}

θ (−1 + θ)2 log2(1 − θ)
,

γ2(θ̂) = −{log4(1 − θ) + 232 log2(1 − θ) θ3 + 116 log3(1 − θ) θ2 + 78 θ3 log(1 − θ)

− 5 log2(1 − θ) θ2 − 28 θ log3(1 − θ) + 85 θ2 log4(1 − θ) + 84 θ4 log(1 − θ)

− 32 log4(1 − θ) θ + 25 θ4 log2(1 − θ) + 83 θ3 log3(1 − θ) + 54 θ4}
/{

θ n [θ + log(1 − θ)]
3
}

.

(iii) Zeta (θ > 0, y = 1, 2, . . .): α(θ) = θ+1, ζ(θ) = Zeta(θ+1), d(y) = log y, v(y) = 0, where ζ(θ)

is the Riemann zeta function, i.e., ζ(θ) =
∑∞

i=1 i
−(θ+1) (see, e.g., Patterson, 1988) and g =

g(θ) = d logZeta(θ+ 1)/dθ, θ̂ is obtained as solution of the equation g(θ̂) = −n−1Σn
i=1 log yi,

γ1(θ̂) =
−2g′′
√

ng′3
, γ2(θ̂) =

−9(g′′′ g′ − 3 g′′2)

n g′3
.

(iv) Gamma (k > 0, θ > 0, y > 0):

(a) k known: α(θ) = θ−1, ζ(θ) = θk, d(y) = ky, v(y) = (k − 1) log y − log{Γ(k)}, where Γ(·)
is the gamma function , θ̂ = y,

γ1(θ̂) =
2√
kn
, γ2(θ̂) =

6

n k
.

(b) θ known: α(k) = 1 − k, ζ(k) = θ−kΓ(k), d(y) = log y, v(y) = −θy, k̂ is obtained as

solution of the equation ψ( k̂) = n−1 log (θn/
∏n

i=1 yi), where ψ(·) is the digamma function,

γ1(k̂) =
−2ψ

′′

( k)
√

nψ′3(k)
, γ2(k̂) =

9{3ψ′′
2( k) − ψ

′′′

( k)ψ
′

( k)}
nψ′3( k)

.

(v) Rayleigh (θ > 0, y > 0): α(θ) = θ−2, ζ(θ) = θ2, d(y) = y2, v(y) = log(2y),

θ̂ =
(

n−1 ∑n
i=1 y

2
i

)1/2
,

γ1(θ̂) =
1

2
√
n
, γ2(θ̂) = − 3

4n
.

(vi) Extreme value (−∞ < θ < ∞, φ > 0, φ known, −∞ < y < ∞): α(θ) = exp(θ/φ), ζ(θ) =

φ exp(−θ/φ), d(y) = exp(−y/φ), v(y) = −y/θ, θ̂ = −φ log
{

n−1 ∑n
i=1 exp(−yi/φ)

}

,

γ1(θ̂) =
1√
n
, γ2(θ̂) =

5

n
.
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(vii) Lognormal (θ > 0, −∞ < µ < ∞, µ known, y > 0): α(θ) = θ−2, ζ(θ) = θ, d(y) =

(log y − µ)2/2, v(y) = − log y − {log(2π)}/2, θ̂ =
[

n−1 ∑n
i=1(log yi − µ)2

]1/2
,

γ1(θ̂) =
1√
2n
, γ2(θ̂) =

−3

2n
.

(viii) Normal (θ > 0, −∞ < µ <∞, −∞ < y <∞):

(a) µ known: α(θ) = (2θ)−1, ζ(θ) = θ1/2, d(y) = (y − µ)2, v(y) = −{log(2π)}/2, θ̂ =

n−1 ∑n
i=1 (yi − µ)2 ,

γ1(θ̂) =
2
√

2√
n
, γ2(θ̂) =

12

n
.

(b) θ known: α(µ) = −µ/θ, ζ(µ) = exp{µ2/(2θ)}, d(y) = y, v(y) = −{y2 + log(2πθ)}/2,
µ̂ = y,

γ1(µ̂) = 0, γ2(µ̂) = 0.

(ix) Inverse Gaussian (θ > 0, µ > 0, y > 0):

(a) µ known: α(θ)=θ−1, ζ(θ)=θ1/2, d(y)=(y−µ)2/(2µ2y), v(y)=−{log(2π y3)}/2 ,

θ̂ = n
[

∑n
i=1

{

(yi − µ)2 /
(

yiµ
2
)

}]

,

γ1(θ̂) =
2
√

2√
n
, γ2(θ̂) =

12

n
.

(b) θ known: α(µ) = θ(2µ2)−1, ζ(µ) = exp(−θ/µ), d(y) = y, v(y) = −θ(2y)−1+

[log{θ/(2π y3)}]/2, µ̂ = y,

γ1(µ̂) =
3
√
µ√
nθ

, γ2(µ̂) =
15µ

n θ
.

(x) McCullagh (θ > −1/2, −1 ≤ µ ≤ 1, µ known, 0 < y < 1): α(θ) = −θ, ζ(θ) = 4−θB(θ +

1/2, 1/2), d(y) = log[y(1 − y)/{(1 + µ)2 − 4µ y}], v(y) = −[log{y(1 − y)}]/2, where B(·, ·)
is the beta function (see McCullagh, 1989), θ̂ is obtained as solution of the equation ψ( θ̂ +

1/2) − ψ( θ̂ + 1) = log 4 − n−1 ∑n
i=1 log

[

{yi(1 − yi)} /
{

(1 + µ)2 − 4µyi

}]

,

γ1(θ̂) =
2{ψ′′

( 1 + θ) − ψ
′′

( θ + 1/2)}
√

{ψ′( θ + 1/2) − ψ′(1 + θ)}3 n
,

γ2(θ̂) = 9{−ψ
′′′

(1 + θ)ψ
′

( θ + 1/2) + ψ
′′′

( 1 + θ)ψ
′

( 1 + θ) + ψ
′′′

( θ + 1/2)ψ
′

( θ + 1/2)

− ψ
′′′

( θ + 1/2)ψ
′

( 1 + θ) − 3ψ
′′
2( 1 + θ) + 6ψ

′′

( 1 + θ)ψ
′′

( θ + 1/2) − 3ψ
′′
2( θ + 1/2)}

/

n {ψ′

( 1 + θ) − ψ
′

( θ + 1/2)}3.
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(xi) von Mises (θ > 0, 0 < µ < 2π, µ known, 0 < y < 2π): α(θ) = −θ, ζ(θ) = 2π I0(θ), d(y) =

cos(y − µ), v(y) = 0, where Iv(·) is the modified Bessel function of first kind and vth order,

and r = r(θ) = I
′

0(θ)/I0(θ), θ̂ = r−1
{

n−1 ∑n
i=1 cos (yi − µ)

}

,

γ1(θ̂) =
−2r

′′

√
n r′3

, γ2(θ̂) =
−9(r

′′′

r
′ − 3 r

′′
2)

n r′3
.

(xii) Log gamma ( θ > 0, −∞ < µ <∞,−∞ < y <∞):

a) µ known : α(θ) = −θ, ζ(θ) = θ−1Γ(θ), d(y) = y−µ−exp(y−µ), v(y) = 0, where Γ(.) is the

gamma function, θ̂ is obtained as solution of the equation ψ(θ̂) −θ̂−1−µ = y−n−1 ∑n
i=1 e

yi−µ,

γ1(θ̂) =
2{2 − ψ

′′

( θ) θ3}
√

n {1 + ψ′(θ) θ2}3

,

γ2(θ̂) =
9{−ψ′′′

( θ) θ4 − ψ
′′′

( θ) θ6 ψ
′

( θ) + 6 − 6ψ
′

( θ) θ2 − 12ψ
′′

( θ) θ3 + 3ψ
′′
2( θ) θ6}

n {1 + ψ′( θ) θ2}3
.

b) θ known : α(µ) = exp(−µ), ζ(µ) = exp(θµ), d(y) = θ exp(y), v(y) = θy+ log θ− log{Γ(θ)},
µ̂ = log

(

n−1 ∑n
i=1 e

yi

)

,

γ1(µ̂) = − 1√
nθ
, γ2(µ̂) =

5

n θ
.

For some of the special cases considered here, the asymptotic formulae for the skewness γ1(θ̂)

and kurtosis γ2(θ̂) of the standardized distribution of θ̂ are very simple and for some of them the

formulae do not even depend on θ. For these cases, it is easier to verify the degree of departure from

normality of the standardized distribution of θ̂. In some cases, however, the asymptotic formulae for

γ1(θ̂) and γ2(θ̂) are very complicated functions of θ and can vary substantially depending on the true

value of the parameter θ. We give in Table 1 the values of
√
nγ1(θ̂) and nγ2(θ̂), when θ = 1, 2, 5, 10

and 15, for the following distributions: truncated Poisson, von Mises, log gamma and gamma (θ

here represents k in case iv-b). For the von Mises, log gamma and gamma distributions, there is the

greatest departure from normality for both n and θ small. In Table 2 the values of
√
nγ1(θ̂) and

nγ2(θ̂) are given when θ = 0.1, 0.2, 0.5, 0.7, 0.9 for the logarithmic series and zeta distributions

and when θ = −0.2,−0.1, 0, 0.1, 0.2 for the McCullagh distribution. For the logarithmic series

distribution, γ1(θ̂) (γ2(θ̂)) changes from positive (negative) to negative (positive) values when θ

varies from 0 to 1. For the logarithmic series, zeta and McCullagh distributions, the kurtosis of θ̂

is significantly large.

It is possible to check by direct calculation that the formulae for γ1(θ̂) and γ2(θ̂) are correct for

some distributions which have closed-form MLEs, namely: gamma (case a), extreme value, normal

12



Table 1: Skewness (
√
nγ1) and kurtosis ( nγ2) of MLEs for some distributions

truncated Poisson von Mises log gamma gamma

θ
√
nγ1 nγ2

√
nγ1 nγ2

√
nγ1 nγ2

√
nγ1 nγ2

1 0.6683 −0.9283 2.1268 31.2961 2.0477 12.2297 2.2791 13.4613

2 0.3407 0.5223 4.1126 76.4142 1.5452 6.3530 1.5605 5.7494

5 0.3558 0.6409 5.5847 113.8179 0.9700 2.2618 0.9372 1.9914

10 0.3140 0.1233 5.6833 108.5828 0.6678 1.0289 0.6478 0.9465

15 0.2582 0.0671 5.6664 106.8515 0.5376 0.6588 0.5249 0.6204

Table 2: Skewness (
√
nγ1) and kurtosis ( nγ2) of MLEs for some distributions

logarithmic series zeta McCullagh

θ
√
nγ1 nγ2

√
nγ1 nγ2 θ

√
nγ1 nγ2

0.1 2.5734 −22.7753 4.0105 54.3750 −0.2 4.5171 71.5131

0.2 0.4213 −21.3393 4.0394 55.4020 −0.1 4.6894 77.3013

0.5 −2.6839 14.7915 4.2094 61.4948 0 4.8347 82.1760

0.7 −4.2951 54.0575 4.3761 67.6370 0.1 4.9557 86.2129

0.9 −6.3359 127.0926 5.4173 101.1454 0.2 5.0557 89.5333

(cases viii-a and b) and inverse Gaussian (cases ix-a and b). The normal N(µ, θ) distribution with

known variance θ (case viii-b) is the only case for which the moment ratios vanish, since the MLE µ̂

has an exact normal distribution. In a few cases, the distribution of a certain multiple of the MLE

θ̂ has the same distribution proposed for the data. It is then possible to obtain by direct calculation

the moment ratios of θ̂ from the corresponding moment ratios of the data. In this situation we

have the following case: inverse Gaussian with known precision parameter θ (case ix-b) for which

the MLE µ̂ of the mean µ has an inverse Gaussian IG(µ, nθ) distribution with parameters µ and

nθ. The invariance property also holds for other distributions, not included in the above examples,

such as: binomial B(m, θ) for which nmθ̂ has a binomial B(nm, θ) distribution and Poisson P (θ)

where nθ̂ has a Poisson P (nθ) distribution.
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For the gamma with known index k and unknown mean (case iv-a), extreme value, normal

with known mean µ and unknown variance (case viii-a) and inverse Gaussian with known mean

and unknown dispersion parameter (case ix-a) distributions, the MLE θ̂ is proportional to a chi-

squared random variable and we can easily obtain γ1(θ̂) and γ2(θ̂) from the corresponding moment

ratios γ1(χ
2
r) = 2

√
2√
r

and γ2(χ
2
r) = 12√

r
of a χ2

r distribution.

The division of the (
√
nγ1, nγ2) plane among the various distributions for which γ1(θ̂) and

γ2(θ̂) do not depend on the value of θ is shown in Figure 1. Good agreement with normal asymptotic

theory happens when the point (γ1, γ2) is close to the origin. Departure of γ1(θ̂) and γ2(θ̂) from

the normal value of zero is an indication of nonnormality in the distribution of the MLE θ̂.

Figure 1: A chart relating the distribution of θ̂ to the values of
√
nγ1(θ̂) and nγ2(θ̂)

4 Graphical Analysis

It is clear from the results in Section 3 that for several distributions γ1(θ̂) and γ2(θ̂) are

not constant but functions of θ. We now discuss the dependence of these indices on θ by plotting
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√
nγ1(θ̂) and nγ2(θ̂) versus θ for the following distributions: truncated Poisson, logarithmic series,

von Mises, McCullagh and zeta. These plots are given in Figures 2 through 6, respectively, to shed

some light on how different values of θ affect the behavior of the standardized cumulants of θ̂ for

these distributions and hence the normal approximation for θ̂. Figure 2 shows that
√
nγ1(θ̂) and

nγ2(θ̂) become very small for large values of θ for the truncated Poisson distribution in agreement

with the fact that the normal approximation for θ̂ is better when θ is large. The distribution of θ̂ is

always positively skewed and is platykurtic for (approximately) 0.2567 < θ < 1.5123.
√
nγ1(θ̂) and

nγ2(θ̂) increase quite fast when θ → 0 showing that the normal approximation for the distribution

of θ̂ breaks down for very small θ. In the case of the logarithmic series distribution (Figure 3), the

absolute skewness and kurtosis of θ̂ become very large for values of θ close to zero or one and, as

might be expected, very marked departures from normality would occur in these cases for most

sample sizes. In particular, γ1(θ̂) vanishes for θ around 0.2293 and γ2(θ̂) vanishes for values of

θ around 0.0407 and 0.3994. The distribution of θ̂ is positively (negatively) skewed for θ < 0.2293

(θ > 0.2293) and platykurtic for 0.0407 < θ < 0.3994.

The case of the von Mises distribution (Figure 4) shows a rather interesting behavior. Both

curves of
√
nγ1(θ̂) and nγ2(θ̂) increase quite fast for small θ and after reaching peaks at ap-

proximately 4.4586 and 3.7466, respectively, decrease continuously approaching asymptotic values

around 5.67 and 106.85 as θ increases. This is shown via computational methods. For θ > 15,

nγ2(θ̂) has an instable behavior. The distribution of θ̂ is always positively skewed and leptokurtic.

Figure 5 displays
√
nγ1(θ̂) and nγ2(θ̂) versus θ for the McCullagh distribution. Both moment ratios

γ1(θ̂) and γ2(θ̂) are positive and increase from 4.002 and 54.067 to 5.657 and 108, respectively, as θ

increases from −1/2. In fact, limθ→∞ γ1(θ̂) =4
√

2√
n

and limθ→∞ γ2(θ̂) =108
n (see Section 5) showing

that both moment ratios approach asymptotic levels as θ increases to ∞. Finally, consider the zeta

distribution (Figure 6). For small values of θ, it can be shown (see also Section 5) that limθ→0 γ1(θ̂)

= 4√
n

and limθ→0 γ2(θ̂) =54
n . However, the moment ratios γ1(θ̂) and γ2(θ̂) diverge to ∞ as θ becomes

large. Figures 5 and 6 show that the normal approximation for the distribution of θ̂ deteriorates

when θ increases for the McCullagh and zeta distributions. In fact, because of the large kurtosis

for any θ, the distribution of θ̂ is far from the normal distribution for these cases except if n is very

large.
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Figure 2: Truncated Poisson Distribution

Figure 3: Logaritmic Series Distribution

5 Concluding Remarks

We derive simple formulae for the asymptotic skewness γ1(θ̂) and kurtosis γ2(θ̂) of the max-

imum likelihood estimator θ̂ in the one-parameter exponential model. We apply the formulae to a

number of distributions, thus giving closed-form expressions for these moment ratios for the pur-
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Figure 4: von Mises Distribution

Figure 5: McCullagh Distribution

poses of computing first-order confidence intervals for θ from the normal distribution of θ̂. We also

review two second-order methods to obtain improved confidence intervals for θ when the normal

approximation for the distribution of θ̂ is probably bad. A graphical analysis that shows the de-

pendence of these moment ratios on θ is performed for some distributions. This analysis is useful

to examine to which intervals of the parameter space correspond smaller values of | γ1(θ̂) | and

| γ2(θ̂) | in order to guarantee approximate normality for the distribution of θ̂. The distribution
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Figure 6: Zeta Distribution

of the MLE for all of the given distributions (other than the normal) will have some degree of

departure from normality. For some distributions, it may be possible to specify intervals of θ for

which the distribution of θ̂ is more likely to departure from normality.

The knowledge of γ1(θ̂) and γ2(θ̂) can be used to reduce skewness and kurtosis of the dis-

tribution of θ̂ to insignificance by making the sample size n large enough. For example, if these

moment ratios are less than 1/10, then one might consider that approximate normality of θ̂ has

been achieved. From this point of view, it is very simple to recommend the minimum value of n if

both moment ratios do not depend on θ. If this is not the case, the critical sample size needed to

make the asymptotic skewness and kurtosis less than 1/10 can be evaluated if we have any prior

idea of the neighbourhood where the true parameter lies. Two illustrative examples are now given.

A critical sample size of 143 would be needed to control these moment ratios for the von Mises

distribution when θ < 0.20. Far larger samples may be required whenever θ exceeds 0.20. The

smallest sample size needed for the truncated Poisson distribution when θ > 0.2 is 719, although

we require far smaller sample size when θ becomes large.
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##Principal Program##

##Put the coefficient alpha and zeta

##Example logarithmic series

alpha:=-log(theta);

zeta:=-log(1-theta);

####

beta:=diff(zeta,theta)/(zeta*diff(alpha,theta));

##Function of the Skewness Coefficient##

f1:=(alpha,beta)-¿(-2*diff(alpha,theta)*diff(beta,theta$2)-diff(alpha,

theta$2)*diff(beta,theta))/

(n∧2*(diff(alpha,theta)*diff(beta,theta))∧3);

##Function of the Kurtosis Coefficient##

f2:=(alpha,beta)-¿(3/(n∧2*(diff(alpha,theta)*diff(beta,theta))∧2)-(diff

(alpha,theta$3)*diff(beta,theta)+

9*diff(alpha,theta$2)*diff(beta,theta$2)+

9*diff(alpha,theta)*diff(beta,theta$3)-

9*diff(alpha,theta$2)∧2*diff(beta,theta)/(diff(alpha,theta)))/(n∧3*(diff

(alpha,theta)*diff(beta,theta))∧4)+

(27*diff(alpha,theta)∧2*diff(beta,theta$2)∧2-

6*diff(alpha,theta$2)∧2*diff(beta,theta)∧2+

24*diff(alpha,theta)*diff(beta,theta)*diff(alpha,theta$2)*diff(beta,theta$2))

/ (n∧3*(diff(alpha,theta)*diff(beta,theta))∧5));

var:=1/simplify(n*diff(alpha,theta)*diff(beta,theta));

##Value of of the Skweness Coefficient##

s:=simplify(f1(alpha,beta)/(var∧(3/2)));

##Value of of Kurtosis Coefficient##

v:=simplify((f2(alpha,beta)/((var)∧2))-3);
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