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Abstract: We discuss in this paper the problem of testing equality and inequality
constraints in univariate elliptical linear regression models. First, the problem of
testing the linear equality hypothesis H0 : Cβ = d against the linear inequality
hypothesis H1 : Cβ ≥ d, with at least one strict inequality in H1 (case 1)
and then, H1 : Cβ ≥ d against H2 : β ∈ IRp − H1 (case 2). This class of
models includes all symmetric continuous distributions, such as normal, Student-
t, Pearson VII, exponential power and logistic, among others. It is commonly
used for the analysis of data containing influential or outlying observations with
responses supposedly normal. Iterative processes for evaluating the parameters
under equality and inequality constraints are presented. Under regular conditions
the expressions of the statistics for three asymptotically equivalent statistical tests
as well as their asymptotic null distribution are given. An illustrative example
with presence of influential observations on the decisions from the statistical tests
of different elliptical models is presented. The robustness aspects of such models
are discussed.
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1 Univariate elliptical linear models

Let εi, i = 1, . . . , n, be independent random variables with density function
of the form

fεi
(ε) =

1√
φ

g{(ε/
√

φ)2}, ε ∈ IR, (1)

where φ > 0 is the scale parameter, g : IR → [0,∞] is such that
∫∞
0

g(u2)du
< ∞. We will denote εi ∼ El(0, φ). The function g(.) is called density
generator (see, for example, Fang, Kotz and Ng, 1990). Consider the linear
regression model

yi = µi + εi, i = 1, . . . , n, (2)

where µi = xT
i β, xT

i = (xi1, . . . , xin)T contains values of p explanatory
variables, y1, . . . , yn are the observed response values, and β = (β1, . . . , βp)T
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is the parameter vector. The model defined by (1)-(2) is called univariate
elliptical linear regression model. A joint iterative process to find the un-
restricted estimates β̂ and φ̂ is given by

β(r+1) = {XT D(v(r))X}−1XT D(v(r))y and (3)

φ(r+1) =
1
n

Qv(β(r)), for r = 0, 1, . . . , (4)

where Qv(β) = (y −Xβ)T D(v)(y −Xβ), D(v) = diag{v1, . . . , vn}, vi =
−2Wg(ui), ui = (yi − xT

i β)2/φ and Wg(u) = g′(u)/g(u) with g(u) =
∂g(u)/∂u. We should start the iterative process (3)-(4) with initial values
β(0) and φ(0).

2 Restricted estimation

2.1 Equality constraints

Suppose first we are interested in estimating the parameter vector β under
k linearly independent restrictions CT

j β − dj = 0, where Cj , j = 1, . . . , k,
are p × 1 vectors and dj , j = 1, . . . , k, are scalars, both known and fixed.
The problem here is to maximize the log-likelihood function L(θ) subject
to the linear constraints Cβ − d = 0, where C = (CT

1 , . . . ,CT
k )T and

d = (d1, . . . , dk)T . Similarly to Nyquist (1991), that investigated this kind
of problem in generalized linear models, we will apply the methodology of
penalty functions by considering a quadratic penalty function. The result-
ing iterative process is given by

β0(r+1) = {XT D(v(r))X}−1XT D(v(r))y + {XT D(v(r))X}−1CT ×[
C{XT D(v(r))X}−1CT

]−1

×[
d−C{XT D(v(r))X}−1XT D(v(r))y

]
, (5)

for r = 0, 1, . . ., where φ(r) is obtained from (4). The authors have devel-
oped a library in S-Plus and R to fit univariate elliptical linear models based
in some distributions and the iterative process (3-5) and more, some diag-
nostic graphics. This library is available in the web page www.de.ufpe.br
/∼cysneiros/elliptical/elliptical.html.

2.2 Inequality constraints

The problem of maximizing log-likelihood functions restricted to linear in-
equality parameter constraints Cβ − d ≥ 0 have been investigated by
various authors (see, for instance, Robertson, Wright and Dykstra, 1988
and Fahrmeir and Klinger, 1994). Our primary interest is to obtain the
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maximum likelihood estimate of β, denoted by β̃, in model (1) subject
to the constraints Cβ − d ≥ 0; that is, we want to solve the problem
max{Cβ−d≥0} L(β, φ). We can apply the Kuhn-Tucker conditions to at-
tain the restricted maximum. These conditions are equivalent to finding β̃
from a searching procedure which consists in maximizing L(β, φ) subject
to CT

j β − dj = 0, j ∈ I, for each I ⊆ {1, . . . , k}. The inequality-restricted
problem reduces to a equality-restricted problem that may be solved by
the procedures given in Section 2.1.

3 One-sided tests

3.1 Case 1

We will consider in this section the problem of testing the hypotheses H0 :
Cβ = d against H1 : Cβ ≥ d, with at least one strict inequality in H1.
The usual statistics likelihood ratio, Wald and score take, in this case, the
forms

ξLR = 2

[
n

2
log

(
φ̂0

φ̃

)
+

n∑
i=1

log

{
g{(yi − xT

i β̃)2/φ̃}

g{(yi − xT
i β̂

0
)2/φ̂0}

}]
,

ξW =
4dg

φ̃
(Cβ̃ − d)T {C(XT X)−1CT }−1(Cβ̃ − d) and

ξSR =
φ̂0

4dg
{Uβ(β̂

0
, φ̂0)−Uβ(β̃, φ̃)}T (XT X)−1{Uβ(β̂

0
, φ̂0)−Uβ(β̃, φ̃)},

respectively, where dg = E{W 2
g (Z2)Z2} with Z ∼ El(0, 1) and Uβ(β, φ) =

1
φXT D(v)(y−Xβ). In addition, suppose the parameter space of β is open.
Under the regular condition given in Gourieroux and Monford (1995, Sec-
tion 21.3) it follows that the statistics ξLR, ξW and ξSR are asymptotically
equivalent as a mixture of chi-square distributions, namely

Pr{ξLR ≥ c} =
k∑

`=0

ω(k, `;∆)Pr{χ2
` ≥ c}+ o(1), (6)

where c ≥ 0, ∆ = CK−1
ββCT , Kββ = 4dg

φ (XT X), χ2
0 denotes the degenerate

distribution at the origin and ω(k, `;∆)’s are known as level probabilities
which are expressed as functions of correlation coefficients associated with
the matrix ∆. These correlation coefficients are the minimum information
necessary to compute the asymptotic null distribution given in (6) because
ω(k, `;∆) depends on ∆ only through its correlation matrix. Examining the
expression of Kββ we can conclude that ω(k, `;∆) does not depend on β.
Then, the distribution given in (6) is unique and consequently invariant in
the elliptical class. This property rarely occurs in other classes of regression
models such as generalized linear models (see, for instance, Paula and Sen,
1995).
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3.2 Case 2

Now, we will consider the hypotheses H1 : Cβ ≥ d against H2 : β ∈
IRp −H1. In this case, the usual statistics likelihood ratio, Wald and score
take the forms

ξc
LR = 2

[
n

2
log

(
φ̃

φ̂

)
+

n∑
i=1

log

{
g{(yi − xT

i β̂)2/φ̂}
g{(yi − xT

i β̃)2/φ̃}

}]
,

ξc
W =

4dg

φ̂
(Cβ̂ −Cβ̃)T {C(XT X)−1CT }−1(Cβ̂ −Cβ̃) and

ξc
SR =

φ̃

4dg
Uβ(β̃, φ̃)T (XT X)−1Uβ(β̃, φ̃)T .

An important asymptotic result observed in the last section is the lack of
functional dependence of ∆ = CK−1

ββCT on β. The main consequence of
this fact is that the asymptotic null distribution of ξc

LR, ξc
W and ξc

SR for
the purpose of testing H1 against H2, is uniquely determined and given by

Pr{ξc
LR ≥ c} =

k∑
`=0

ω(k, k − `;∆)Pr{χ2
` ≥ c}+ o(1). (7)

4 Example

We will reanalyze in this section the example discussed by Ramanathan
(1993) on a study in which seven variables were observed in 40 metropolitan
areas. The main interest is on regressing the number (in thousands) of
subscribers with cable TV (Y ) against the number (in thousands) of homes
in the area (X1), the per capita income for each television market with cable
(X2), the installation fee (X3), the monthly service charge (X4), the number
of television signals carried by each cable system (X5) and the number of
television signals received with good quality without cable (X6). Because
Y corresponds to count data we will use a square root transformation in
order to stabilize the variance of Y . Then, we will propose the model

√
yi = β0 +

6∑
j=1

βjxji + εi, i = 1, . . . , 40,

where εi ∼ El(0, φ) are mutually independent errors. In addition, it is
reasonable to assume some constraints. For example, it is expected that the
number of subscribers decreases as the monthly service charge increases,
which leads to the restriction β4 ≤ 0. Following the same idea for the
remaining variables one has the constraints β1 ≥ 0, β2 ≥ 0, β3 ≤ 0, β5 ≥ 0
and β6 ≤ 0. Applying one-sided t tests we can notice indications that
the coefficients β2, β3 and β4 seem to be individually equal to zero, at
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the significance level of 5%, while some doubt appears for the coefficient
β5 whose p-value is about 3%. The remaining coefficients β1 and β6 are
highly significant in the direction of the constraints. Thus, in order to
assess if the four coefficients β2, β3, β4 and β5 are jointly equal to zero, we
apply the statistical tests defined in Sections 3.1 to assess, the hypotheses
H0 : β2 = β3 = β4 = β5 = 0 against H1 : β2 ≥ 0, β3 ≤ 0, β4 ≤ 0 and
β5 ≥ 0, with at least one strict inequality in H1. Our main conclusion of this
example based on diagnostic methods is that the transformation

√
Y seems

to stabilize the variance of the responses, but the Student-t with 6 degrees
of freedom, exponential power and logistic-II models are less influenced by
the outlying observation 14 than the normal model. The one-sided tests
based on these three fitted models indicate for the rejection of the null
hypothesis at the significance level of 5% while under the normal model
the rejection of the null hypothesis becomes evident only after dropping the
outlying observation 14. However, the Student-t model seems to be more
robust against the influential observation 1 than the other three models.
Continua ting the selection procedure the Student-t model appears as the
best fitted model.
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