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Abstract

Mathematical modeling used in describing coalescence processes is extensively
documented in the literature, but not all of these theoretical frameworks encompass
the concept of coalescence itself. This research presents the Totally Asymmetric
Coalescence Process (TACP), a new class of interacting particles in which the
environment functions in the interaction process. Theoretical results and numerical
analysis are presented for the TACP.
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1 Introduction
In the interacting particle systems theory, the assumption that the set of particles does not
alter in the process of interaction is a well-established concept. This assumption, known as
the constant-length assumption, is not the only possible one. A. Toom and V. Malyshev
[1, 2] have suggested an alternative method, referred to in the literature as variable or
complex architecture[3], process with variable length[4], and random substitution[5]. Unlike
traditional procedures, the space changes during the evolution process in this approach. In
this research, we will adopt the terminology of interacting particle systems with variable
length [6, 7, 8, 2, 9].

This notion of variable-length, in finite systems, has been employed in biology, in the
context-free L-systems to describe the development of higher plants and complex branching
structures [10]. It can also be seen in some models proposed to determine the nucleotide
sequence evolution and patterns in a genome [11]. In the context of genomic evolution
modeling, presuming its particles are in N, the so-called expansion-modification system
[12, 13, 14]. is observed. In addition, variable-length has been employed in the study of
the robustness of quasiperiodic structures [15] associated with random perturbations of
Fibonacci sequences and Penrose tilings. Particularly, the existence of a positive topological
entropy was determined. It was later confirmed [16] that this topological feature holds for
a vast class.
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A more general formalization for this process has been introduced by A. Toom and
V. Malyshev, both of whom made great contributions in providing valuable insights into
this study’s scope and demonstrating the continued advancement and innovation in the
field. They had diverse motivations. V. Malyshev [1, 17] was inspired by computer science
and its associated with quantum computation glitches and some concerns about modern
physics, particularly quantum gravity. Contrarily, A. Toom [9] was inspired by the positive
rates conjecture, which can be informally given as follows: all one - dimensional particle
systems with non-degenerate local interaction are ergodic, that is cannot display analogs of
phase transitions. This conjecture was rebutted by Peter Gács [18].

We believe that the particle process with variable length more accurately elucidates
the concept of coalescence existing in some real-world phenomena. This will certainly aid
in the development of this theory and unlock new possibilities for its application.

Informally, in our process, the particles will be located at Z. We presume that the
environment will only trigger a positive or negative stimulus. Therefore, our particles
take on only two values, referred to here as plus and minus, represented by ⊕ and 	
respectively. The process we have evaluated here is called the Asymmetric Coalescence
Process (TACP) and has discrete time. At each time step, two operations occur. The first
operation called flip, converts every minus into a plus with probability β, independently
of what occurs at other locations. We can imagine the flip as a change from negative to
positive stimulus for the particle. The second operation, called coalescence, functions as
follows: if a particle with a positive stimulus is a left neighbor of a particle with a negative
stimulus, the particle with a positive stimulus will be attracted to its left neighbor, and
with probability, α, this attraction will be powerful enough to cause a merge between the
two particles into one (coalesce). In the new particle developed, the negative stimulus will
be dominant and will be independent of what occurs in other locations.

Beginning from the delta measure concentrated on the configuration where all com-
ponents are in the negative state 	, we can validate the existence of a phase transition
between ergodic and non-ergodic behavior in the TACP in the parameter space. In the
non-ergodic regime, we show the existence of at least two linearly independent invariant
measures. The density of positive stimuli ⊕ is one, while in the other it is less than
one in one of these measures. The TACP displays a first-order phase transition, which
is unexpected given the analogy with some traditional processes (such as percolation
processes) with constant-length.

The structure of this research is as follows: In Section 2, we highlight our major
outcomes; a numerical analysis with mean-field approximation and Monte Carlo simulation
is illustrated in Section 3; In Section 4, we present our operators; Section 5 focuses on the
proofs of Theorems 2, 3, and 4’. Owing to the large number of theoretical tools needed to
prove Theorem 1, we dedicate Sections 6 and 7 to this task. Finally, some open questions
are introduced in Section 8.

2 Main Results
We refer to a non-empty finite set A as an alphabet and its elements as letters. A word in
the alphabet A is described as a finite sequence of elements of A. The length of a word W
is equal to the number of its letters and is represented by |W |. The empty word, depicted
by Λ, has a length of zero. The set of all words in the alphabet A is called the dictionary
and is signified by dic(A). The set of integers is denoted by Z and the set of all bi-infinite
sequences comprising of elements from A is represented by AZ.
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Let A be a set and represent by A the discrete topology on A. We contemplate
probability measures on the σ-algebra AZ on the product space AZ endowed with the
product of discrete topologies on all the copies of A.

In the usual way, we define the translation on Z, then on AZ, and finally on the set of
probability measures on AZ. A measure is said to be translation-invariant if it is invariant
under all translations, that is,

µ(a1, . . . , an) = µ(si+1 = a1, . . . , si+n = an), for all i ∈ Z

For any word W ∈ dic(A) (including the empty word), we have:

µ(W ) =
∑
a∈A

µ(W, a) =
∑
a∈A

µ(a,W ).

With this data, we can finally conclude that M is the set of all translation-invariant
probability measures on AZ that are described for any word W ∈ dic(A), such as the
empty word, and any letter a ∈ A. The concatenation of the word W and letter a can
happen in either order, i.e., (W,a) or (a,W ).

In this context, µPt refers to the t-th composition of the measure µ and the operator P.
A measure µ is called invariant for the operator P if µP = µ, meaning that the measure
remains unchanged after one application of P.

If the limit lim
t→∞

µPt exists and is the same for any initial measure µ, then the process
is called ergodic. This means that as the number of iterations of the operator P grows
larger, the result converges to a unique and invariant distribution, regardless of the initial
measure.

The motivation behind this research comes from the concept of coalescence and a new
class of interacting particle systems with variable length presented in [2]. In this work, we
suggest and research a discrete time procedure in which the particles are placed on the
integer line Z and can only predict one of two stimuli: positive (denoted by ⊕) or negative
(denoted by 	). The procedure operates on M{	,⊕}, the set of translation-invariant
probability measures on {	,⊕}Z.

For simplicity, we refer to this process as the Totally Asymmetric Coalescence Process
(TACP).

The first operator, known as the flip operator, is denoted by Fβ. This operator is
of frequent length and changes negative stimuli into positive stimuli with probability β,
independently of any other happenings.

The second operator, known as the coalesce operator, is denoted by Cα and mapsM	,⊕
to itself. Below the action of this variable-length operator, if a particle with a positive
stimulus is the left neighbor of a particle with a negative stimulus, they will be criped
to each other with probability α. The attraction is so strong that these two particles
merge into one, developing a single particle with a negative stimulus. If we contemplate
a similar procedure on finite configurations, each act of the coalesce operator in a word
(⊕	) decreases the length of the configuration by one. These events are independent of
all other occurrences.

We research the TACP below the action of the flip and coalesce operators(in this order),
beginning from the initial measure δ	. We aim to evaluate the asymptotic behavior of the
TACP as time goes to infinity and to comprehend how the parameters α and β affect the
evolution of the system. We denote the TACP by

µt = δ	(FβCα)t. (1)
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The following trivial cases in (1) are describe: if α = 0 and β ∈ (0, 1), then δ	(FβCα)t →
δ⊕ with t → ∞; if β = 1 and α ∈ [0, 1], then δ	FβCα = δ⊕ and if β = 0 and α ∈ [0, 1],
then δ	FβCα = δ	. However, we contemplate the case where β ∈ (0, 1) and α ∈ (0, 1)
only. This can only mean that there is a non-zero probability for the negative stimulus to
turn into a positive stimulus and for two neighboring particles to merge into one with a
negative stimulus.

Now, we shall state our main results.

Theorem 1. For α ∈ (0, 1). If β < α2

55 , then

(A. 1) for all t ∈ N, µt(⊕) < 1.

(B. 1) There is ν ∈M such that ν(FβCα) = ν. Moreover ν(⊕) < 1.

As δ⊕ is invariant for FβCα, the Theorem 1 give us that µt is non-ergodic when
β < α2/55.

Theorem 2. For

h(β) =


2β, se β ≤ β∗,

β

(1− β)2 + (1− β)β2 , se β > β∗,

where β∗ = −1
6
(
26 + 6

√
33
)1/3

+ 4

3
(
26 + 6

√
33
)1/3 + 2

3 . If α < h(β), then limt→∞ µt = δ⊕.

In the above, Theorems 1 and 2 provide outcomes on the attitude of the measure
µt as t approaches infinity, forming a kind of phase transition to µt. The first theorem
states that if β < α2/55, then for all t ∈ N, the frequency of positive stimuli in µt is less
than 1 and there exists a measure ν that is invariant below the action of FβCα and has
a frequency of positive stimuli that is lower than 1. The second theorem states that if
α < h(β), then the measure µt converges to δ⊕, meaning that the frequency of positive
stimuli approaches 1 as t approaches infinity. In Figure 1 we summarize this outcome and
some others from the numerical research.

Theorem 3. Given α, β ∈ (0, 1) and µ ∈ M{	,⊕}. If µ(	) ∈
(

0, β

α(1− β)

)
, then

limt→∞ µ (FβCα)t = δ⊕.

Theorem 4. Let s(β, α) the supremum of density of ⊕ in µt. For every α ∈
(

β

(1− β) , 1
)

,

s(β, α) is not continuous as a function of β.

Theorems 3 and 4 show the behavior of the TACP model for different values of α and
β. Theorem 3 states that, if the initial measure µ satisfies a certain condition, then the
procedure µ (FβCα)t converges to the state where all particles are in the ⊕ state. Theorem
4 states that the function that measures the density of ⊕ in µt is not continuous as a
function of β for a certain range of α. This implies that the TACP exhibits a kind of
first-order phase transition.
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3 Numerical study
The mean-field theory and Monte Carlo simulation are widely employed methods in
scientific study to help guide the formulation of hypotheses that can then be formally
proved. In the case of the TACP, the mean-field theory is employed to explain the
dependence of the density of ⊕ in the measure µ (FβCα) on the density of ⊕ in the measure
µ. The Monte Carlo simulation is employed toguess the density of ⊕ in µ (FβCα) . By
combining these two methods, studies can gain insight into the behavior of the TACP and
make predictions that can then be rigorously proved by employing formal mathematical
methods[19].

The Mean-Field operator, denoted by m : M → M, maps the set of translation-
invariant probability measures in AZ to itself. The density of ⊕ in the measure µ(mFβCα)
based solely on the density of ⊕ in the measure µ, and this dependence can be given as:

f(x) = b− αb(1− b)
1− αb(1− b) .

where x signifies the density of plus in the measure µ, f(x) denotes the density of plus
in the measure µ(mFβCα), and b = µFβ(⊕) = (1 − β)µ(⊕) + β. Thus, the study of the
operator FβCα can be lowered to the research of the operator mFβCα, which is equivalent
to the dynamic system study f : [0, 1]→ [0, 1] with parameters α, β ∈ [0, 1].

In this scope, we say that f is ergodic if there is a unique fixed point x0, and lim
t→∞

f t(x)
converges to x0 from any x ∈ [0, 1]. If this is not so, then we say that f is non-ergodic.
Hence, mFβCα is ergodic if α < 4β and non-ergodic if α ≥ 4β. These behaviors are in
qualitative agreement with the phase transition defined in Theorems 1 and 2.

Now, we consider the analog of the TACP in finite configurations. In this case, our
method is a Markov Chain with a countable set Ω = {⊕,	}Zn of states known periodics,
where Zn is the set of integers modulo n. For a periodic x ∈ Ω, we represent by |x| the
number of components in the periodic, and their indices are remainders modulo |x|.

In our simulations, we begin with an initial periodic x consisting of 1000 particles
in the negative stimulus. The integer time t elevates from 0 to a maximum of 100, 000.
The periodic at time t is signified by xt and its components are represented by xti, where
i = 0, . . . , |xt| − 1. We denote the density of ⊕ in x as dens(⊕|x). We stop the simulation
when t = 100, 000 or there are no particles in negative stimulus in the periodic xt.

We assign the estimated value to the Boolean variable E (representing ergodicity),
where E = yes if the last periodic xt consists of no particles in negative stimulus, and
E = no otherwise. If E = yes, we interpret this as proposing that the procedure with the
provided values of α and β is ergodic; if E = no, we interpret this as proposing that the
procedure is non-ergodic.

In our simulations, we began with β = 0.015 and then update β by applying 0.001,
repeating this until β reaches 1 or E = yes, proposing ergodicity. We conduct this cycle 5
times and record the arithmetic mean of the 5 values of β obtained. We do this for 986
values of α, particularly αi = 0.001 · i for i = 15, . . . , 1000. The corresponding registered
value of β is denoted by βi, resulting in 986 pairs (αi, βi). The curve labeled M.C. in
Figure 1 contains these plotted pairs. We contemplate these values of α and β beginning
at 0.015 to prevent large numerical fluctuations for small β values.

We can see that the M.C. curve is not exactly a curve but rather a scattered disposition
of points. Nonetheless, it gives an idea of the behavior of the procedure. In the parameter
space, there is an ergodic area for α < h(β), where h(β) is provided in Theorem 2. On the
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Figure 1: Here, we illustrate rigorous approximation and two estimations for the curve
that split the ergodic and non-ergodic areas. Each point on the M.C. curve was gotten as
an average of five independent experiments.

other hand, due to Theorem 1, there is a non-ergodicarea for α >
√

55 · β. Both areas are
rigorously approximated in Figure 1.

As stated in Theorem 4, s(β, α) is the supremum of the density of pluses in µt. In
this theorem, it is verified that s(β, α) is not continuous as a function of β. To gain a
better comprehension of this quantity, we perform its numerical estimation. We define the
estimator,

s(β, α) = dens(⊕|xt)
for the final periodic xt gotten in our simulation. The values of s(β, α) gotten from our
simulations are plotted in Figure 2. To offer a visual illustration of this data, each value is
linked with a color, which is illustrated according to the rule revealed in the color box on
the right.

The ergodic area, where s(β, α) = 1, is linked with the white color. In the non-ergodic
area, all s(β, α) values were lower than or equal to 0.25, which categorized its non-continuity
as a function of β.

4 The operators of TACP
Here, we present the flip and coalesce operators.

The flip operator, Fβ, is recognized. It flips the state of each component from 	 to ⊕
with probability β independently of the other components.

We describe the coalesce operator, Cα, as a combination of two operators: Cα =
AttractionαMerge. First, Attractionα is used and then Merge. If a particle in a negative
state is a right neighbor of a particle in a positive state, the two particles will experience a
strong attraction toward each other with probability α or a weak attraction with probability
1 − α. This happens independently for each pair. If the attraction is strong, the left
particle (in a positive state) will become neutral, and the Merge operator will merge the

6



 0.02  0.04  0.06  0.08  0.1  0.12  0.14

probability  β  

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
p

ro
b

a
b

ili
ty

  
 α

 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Figure 2: Here, colors were employed to signify the values of s(β, α) in the region where
the procedure is believed to be non-ergodic. The color box on the right demonstrates how
colors from yellow to black denote the values of s(β, α). When s(β, α) = 1, the associated
color is white.

attracted particles in the neutral and negative states into a new particle with a negative
state. The diagram below depicts the strong attraction (indicated by (i)) followed by the
merge action (suggested by (ii)):

⊕	 (i)−→ �	 (ii)−→ 	.

Let us define operator Attractionα. This operator transform any measure on {	,⊕}Z
into a measure on {	,⊕,�}Z, where � denotes a neutral stimulus.

From definition of Attractionα, we have

µAttractionα(�) = αµ(⊕,	) ≤ 1
2 (2)

Now, let us describe a variable-length operator Merge :M{	,⊕,�} →M{	,⊕}. For any
non-empty word W = (a0, . . . , ak) ∈ dic(	,⊕), we define

µMerge(W ) = µMerge(a0, . . . , ak)

= 1
1− µ(�)

∞∑
n1,...,nk=0

µ(a0 �n1 a1 �n2 a2 · · · �nk−1 ak−1 �nk ak) (3)

where �n represents the word with n letters, every one of which is �, in particular
�0 = Λ. Notice that the formula (3) is non- linear, whence the well-developed theory of
linear operators cannot be used here. Therefore, we get an extra challenge to deal with
variable-length processes.

In Figure 3 we elucidate a possibility, i.e., that can occur with positive probability, the
evolution of the one-time step of our approach.
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5 Proof of Theorems 2, 3 and 4
From our major results, Theorem 1 necessitates many technical details. For this c, we
decided to present its evidence in Section 6. Theorems 2, 3, and 4 only make sense when
β/α(1− β) ≤ 1. We will assume this throughout the remainder of the proof.

The following identities will be beneficial in the proof:

µMerge(	) = µ(	)
1− µ(�) , µMerge(⊕) = µ(⊕)

1− µ(�) . (4)

Proof of Theorem 3. Initially, we will show that µFβCα(	) < µ(	). For all µ ∈
M{	,⊕}, it holds that µAttractionα(	) = µ(	). This, together with Equations (2) and
(4), suggests that

µFβCα(	) = µFβ(	)
1− αµFβ(⊕,	) . (5)

From the consistency of the measure, µ(	) = µ(	,	) + µ(	,⊕). As µ(	,	) ≥ 0, it
follows that µ(	) ≥ µ(⊕,	).Therefore,

µFβ(	)
1− αµFβ(⊕,	) ≤

µFβ(	)
1− αµFβ(	) .

From the definition of Fβ, it follows that µFβ(	) = (1− β)µ(	). Hence,

µFβ(	)
1− αµFβ(⊕,	) ≤

(1− β)µ(	)
1− α(1− β)µ(	) . (6)

Consequently, it suffices to illustrate

(1− β)µ(	)
1− α(1− β)µ(	) < µ(	). (7)

Indeed,

(1− β)µ(	)
1− α(1− β)µ(	) < µ(	)

⇐⇒ (1− β)µ(	) < µ(	)− α(1− β)[µ(	)]2

⇐⇒ [−β + α(1− β)µ(	)]µ(	) < 0
⇐⇒ −β + α(1− β)µ(	) < 0

⇐⇒ µ(	) < β

α(1− β) .

. . . 										 . . . t = 0

. . . 	⊕		⊕		⊕		 . . . flip action

. . . 	�		⊕		�		 . . . Attraction action

. . . 	 		⊕		 		 . . . Merge action(t = 1)

Figura 3: A fragment of the process and its evolution over one time step are shown. The
red color suggests the location where the operator’s action took place.
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So, if µ(	) ∈
(
0, β

α(1−β)

)
, then, by observing (5), (6), and (7), we obtain

µFβCα(	) < µ(	). (8)

Note that µ(FβCα)t(	) > 0, for each t ∈ N. Now, we will show, using induction in t,

that if µ(	) ∈
(

0, β

α(1− β)

)
, then µ(FβCα)t(	) ∈

(
0, β

α(1− β)

)
.

• The base case of the induction, t = 1, has been shown.

• According to our induction hypothesis, we have µ(FβCα)t(	) ∈
(

0, β

α(1− β)

)
. Thus,

from (8),
µ(FβCα)t+1(	) = µ(FβCα)t(FβCα)(	) < µ(FβCα)t(	).

Therefore, the sequence µ(FβCα)t(	) is monotonically decreasing and bounded, so shows
that µ(FβCα)t(	)→ 0 as t→∞.
Proof of Theorem 2.

If there is t ∈ N such that µt(	) ∈
(

0, β

α(1− β)

)
, then Theorem 2 follows from

Theorem 3.
We will consider two cases.

Case 1. β > β∗, so α < β

(1− β)2 + (1− β)β2 . In this case, µ1(	) ∈
(

0, β

α(1− β)

)
. Note

the following chain of equalities:

µ1(	) = δ	FβCα(	)

= δ	Fβ(	)
1− αδ	Fβ(⊕,	)

= 1− β
1− αδ	Fβ(⊕)δ	Fβ(	)

= 1− β
1− αβ(1− β) .

Additionally

1− β
1− αβ(1− β) <

β

α(1− β) ⇐⇒ α <
β

(1− β)2 + (1− β)β2 .

Case 2. β ≤ β∗, so α < 2β.
We will demonstrate that it is impossible for µt(	) ≥ β

α(1− β) , for all t ∈ N. Note

that µt+1(	) = µt(FβCα)(	). From the definitions of Fβ and Cα,

µt+1(	) = (1− β)µt(	)
1− αµtFβ(⊕,	) . (9)

Hence, since for all µ ∈M{	,⊕}, µ(⊕,	) ≤ 1/2, using (9),

µt+ 1(	) ≤ (1− β)µt(	)
1− α/2 .
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Consequently,

µt+1(	)− µt(	) ≤ (1− β)µt(	)
1− α/2 − µt(	)

= (1− β)µt(	)− µt(	) + (α/2)µt(	)
1− α/2

= (α/2− β)µt(	)
1− α/2 .

This last equality signifies a linear function in regards to µt(	). In addition, this linear
function takes on negative values at both extreme points within its interval of definition.
Therefore,

µt+1(	)− µt(	) ≤ m,

Where m is a negative constant. Hence,

µt(	)− µ0(	) ≤ tm.

Therefore, µt(	) approaches −∞ as t approaches infinity, which is impossible.

Assuming Theorem 1 has been verified, we will now prove Theorem 4.
Proof of Theorem 4. It is not possible for s(β, α) to take values in the range(
1− β

α(1−β) , 1
)
. If s(β, α) takes such a value, then there exists a natural number t such

that µt(⊕) > 1− β
α(1−β) , which is equivalent to µt(	) < β

α(1−β) . Accordingly, by Theorem
3, µt(⊕) to 1 as t→∞. Hence, s(β, α) = 1.

Based on Theorem 2, we must have h(β) < 1, but this condition is satisfied when
β < β̄, where β̄ = 1/3

(
2− 5 3

√
2

3
√

69−11 + 3
√

3
√

69−11
2

)
.

We will use this condition for β throughout this proof. Consequently, for any α ∈(
β

1−β , 1
)
, s(β, α): (i) Tends to 0 as β → 0 according to Theorem 1; (ii) is equal to 1 if

α < h(β) as per Theorem 2; (iii) Cannot take values in the range
(
1− β

α(1−β) , 1
)

because
of Theorem 3. Thus, s(β, α) cannot be continuous as a function of β.

6 A fixed-length representation to the TACP
We will present a fixed-length procedure where particles with neutral stimulus will not be
merged at every time step. Rather, they will remain unaltered. Nevertheless, this causes
the loss of locality. The space coordinate is represented by x ∈ Z, and we use y ∈ N, which
is initially equal to zero and elevates by one after each action of Fβ or Cα. Therefore,
y = 2t in the formula (1).

Now, we define the operator Pfixed, represented by Pfixed = Fβ ◦Cα. Here, Fβ and Cα are
maps from M{	,⊕,�} to M{	,⊕,�}. Informally, based on a configuration from {	,⊕,�}Z,
the operator Fβ acts similarly to Fβ. The operator Cα functions as follows: every word
of the form ⊕ �n 	 becomes �n+1	 with probability α, and these transformations are
independent of each other. We consider �0 = Λ, which signifies the empty word.

We signify by
V = {(x, y), x ∈ Z, y ∈ Z+}.
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Let Vy ⊂ V such that the second coordinate of each pair in V is equal to y. We refer
to Vy as the y−levels or simply the levels. Each pair (x, y) ∈ V has an associated random
variable ηy(x) ∈ {	,⊕,�}. The distribution of ηy(x) is represented by δ	Pyfixed. So, if
ηy(x) = a ∈ {	,⊕,�}, it has distribution δ	Pyfixed(x = a). It is also expressed that
η0(x) = 	 for all x ∈ Z.

Under Pfixed, particles in a neutral stimulus to the left of a particle in a negative
stimulus will never merge and all particles will preserve their original integer indices. For
each positive integer t, when y is even, i.e. y = 2t, the operator Fβ is used and when y is
odd, i.e. y = 2t+ 1, the operator Cα is applied.

We represent by ν the measure on {	,⊕,�}V and

ν(Pfixed)y = νy for all y ∈ Z+.

From the aforementioned, we can associate the processes νt and µt as follows:

ν2tMerge = µt, para todo t ∈ Z+. (10)

In fact, (10) can be verified by induction.
Items (a) - (d) are easy to check.

(a) ν (ηy(x) = 	) > 0 for all (x, y) ∈ V.
(b) For any x0 ∈ Z and y ∈ N

ν (∀x ≥ x0 : ηy(x) 6= 	) = ν (∀x ≤ x0 : ηy(x) 6= 	) = 0.
(c) µt(	) > 0 ∀ t ∈ N.
(d) For any x0 ∈ Z and y ∈ N

µt(∀x ≥ x0 : sx 6= 	) = µt(∀x ≤ x0 : sx 6= 	) = 0.

(11)

In the following text, we will only consider events with non-zero probability. We will
describe a planar graph G from the set {	,⊕,�}V . Vertices in G correspond to pairs
(x, y) ∈ V such that ηy(x) 6= �. The set of these vertices is signified by VG. Each vertex
(x, y) is positioned such that the x axis is horizontal and the y axis is vertical.

The graph G has two types of edges: vertical and horizontal. For vertices (x, y1) and
(x, y2) with y2− y1 = 1, a vertical edge connects them. The direction from (x, y1) to (x, y2)
is referred to as north, and the opposite direction is called south. (x, y1) is the south
neighbor of (x, y2) and (x, y2) is the north neighbor of (x, y1).

The graph G has horizontal edges connecting vertices (x1, y) and (x2, y) if x1 < x2
and all x between x1 and x2 satisfy ηy(x) = �. The direction of the edge from (x1, y) to
(x2, y) is referred to as east and the other direction is west. (x1, y) is the west neighbor of
(x2, y), and (x2, y) is the east neighbor of (x1, y). The edges are denoted by straight lines
connecting the points representing the end of the edge. With this, we have described the
graph G.

6.1 A planar representation to G and its dual G
The graph G is represented in the plane as a picture. Each vertex of G can be either a
⊕-vertex or a 	-vertex. The picture is divided into regions called faces, which are all
closed and have a common edge with their neighbors. Bounded faces are referred to as
boxes. The only unbounded face is the bottom half of the plane.

A box is a rectangle between two parallel lines at levels y1 and y1 +1, formally expressed
as:

{(x, y) ∈ R2 : x1 ≤ x ≤ x2, y1 ≤ y ≤ y1 + 1}. (12)
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For even y1, the box (12) has one south neighbor as there are no vertices on its south
wall. For odd y1, there are two cases: if there was a coalesce between sites x1 and x2 from
level y1 to y1 + 1, the box has two south neighbors. If there was no coalesce, the box has
only one south neighbor. These elements can be viewed in Figure 4.
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Figure 4: A fragment of the picture of G and its dual G is depicted. Some figures created
in the dual are emphasized in red and are called rectangles, trapezoids, and triangles.

Let G be the dual of G. We will now elucidate the picture of this dual. We place the
vertex of G, which is the dual of the box (12), at the point:(

x2 −
1
2 , y1 + 1− ε

)
, (13)

where ε > 0 is chosen differently for each box. The corresponding ε can be selected
small enough for each box.

We will refer to the vertex (13) as being in a sub-level y1 + 1. If y1 + 1 is even, we
will say that it is at a sub-even level. However, if y1 + 1 is odd, we will say that it is in a
sub-odd level.

For the unbounded face in G, there is a single vertex in G that will be positioned
appropriately far in the negative y direction. The edges leading to it are rays in the same
direction. For other edges, we denote them with straight segments connecting the points
that represent their ends.

With these definitions, we have defined the picture of G. Unbounded faces of G
correspond to vertices of G at level zero. A face of G is called a west (or east, north,
or south) neighbor of another face of G if their corresponding vertices of G are related
similarly.
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Based on what was stated about the vertices of G at odd levels, any face of the dual
graph G at an odd level has at most one north neighbor. If it has one, it is referred to as
a rectangle or a trapezium; otherwise, it is called a triangle. These faces are approximately
rectangles, trapeziums, and triangles. In Figure 4, we highlight, in red, the faces of G that
are approximately trapeziums and triangles in sub-levels 2, 4, and 6, and the faces of G
that we name rectangles in sub-level 3. Nevertheless, we can detect that there are faces of
G that are rectangles even in even sub-levels. The black lines signify a fragment of the
picture of G, while the picture of its dual G is a combination of red and blue colors.

7 An upper bound to µT (⊕)
Let T ∈ N be arbitrary. By (11), µT (	) is positive, therefore the fraction µT (⊕)

µT (	) is
well-defined. We aim to prove:

µT (⊕) =
∞∑
k=1

µT (	,⊕k). (14)

Let ω ∈ {	,⊕}Z be a configuration and consider the event of finding a ⊕ at a position.
We can section them according to the number of particles with positive stimuli to the left
of that position. By (11), this number is finite almost surely, hence

µT (⊕) ≤ µT (⊕)
µT (	) =

∞∑
k=1

µT (	,⊕k)
µT (	) . (15)

We will now derive a new identity for the last term on the right side of (15). Let

Ω0 = {ω ∈ {	,⊕,�}V : η2T (0) = 	}

and for ω ∈ Ω0 define
xmax(ω) = inf{x > 0 : η2T (x) = 	}.

Employing (11), we conclude that xmax(ω) exists almost surely.
For any ω ∈ Ω0, we define the set

flowers = {(x, 2T ) : 0 < x < xmax(ω) and η2T (x) = ⊕}.

The cardinality of flowers is signified by φ(ω). It has been demonstrated that φ(ω) is
finite almost surely.

For any natural number k, we define

Ωk = {ω ∈ Ω0 : φ(ω) ≥ k}.

It holds that Ωi+1 ⊆ Ωi for all i ∈ N. Our goal is to prove (16),

π(Ωk)
π(Ω0) = µT (	,⊕k)

µT (	) . (16)

For an arbitrary natural number T , π(Ω0) is the probability of finding a particle
in the minus state at position (0, 2T ). As ν is stimulated by π, computing π(Ω0) is
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equivalent to calculating ν2T (x0 = 	). And as ν2T is translation-invariant, we have
ν2T (x0 = 	) = ν2T (	), and thus π(Ω0) = ν2T (	). From (4) and (10),

µT (	) = ν2TMerge(	) = ν2T (	)
1− ν2T (�) =⇒ π(Ω0) = ν2T (	) = µT (	)(1− ν2T (�)). (17)

If ω ∈ Ωk, then the configuration at the level 2T has one of the words

	�n1 ⊕�n2 · · · ⊕ �nk−1 ⊕�nk⊕, (18)

Where �n means the word W = � . . .� where |W | = n. Therefore, compute π(Ωk)
means calculate the probability of find (18) in the level 2T by measure ν because, it is
translation-invariant. So,

π(Ωk) =
∞∑

n1,...,nk=0
ν2T (	�n1 ⊕ · · · �nk ⊕).

In addition, from (3) and (10),

µT (	,⊕k) = ν2TMerge(	,⊕k)

= 1
1− ν2T (�)

∞∑
n1,...,nk=0

ν2T (	�n1 ⊕ · · · �nk ⊕).

So,
µT (	,⊕k) = π(Ωk)

1− ν2T (�) .

Thus,
π(Ωk) = µT (	,⊕k)(1− ν2T (�)).

Dividing this by (17), we prove (16). So,

∞∑
k=1

π(Ωk)
π(Ω0) =

∞∑
k=1

µT (	,⊕k)
µT (	) ,

and using (15),
µT (⊕)
µT (	) =

∞∑
k=1

π(Ωk)
π(Ω0) .

7.1 The contours
Consider any ω ∈ Ω1. Let us call a path in G where every step goes north or west a
north-west path. A vertex in G is called a root if starting from this vertex there is a
north-west path to a flower such that all the vertices in this path are ⊕-vertices.

Since T is fixed, xmax(ω) exists almost surely, and the set of flowers is finite almost
surely, and hence the set of roots is also finite almost surely.

We call the faces of G that are dual to roots dual roots, and the union of these dual
roots is represented by U . Since each dual-root is bounded and we presume all faces to be
closed, U is also bounded and closed, and since the set of roots is finite (which is easy to
prove), it follows that U is homeomorphic to a closed disk. Therefore, the border of U is a
closed curve that incorporates the north end of the side, V0.
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Thus, we consider that this curve starts and ends at V0 and walks around U in a
counter-clockwise direction. This curve can be represented as a path in G, which we
denote by tour(ω). Figure 5 illustrates such a path.

Now, we will categorize all the steps that tour(ω) may include in G. Firstly, we will
classify steps in G. We name the elements of the set

{1, 1′, 2, 2′, 2′′, 3, 4, 4′, 5}

types.
Let (F t

x)(x,t)∈Z×Z+ and (M t
x)(x,t)∈Z×Z+ be two arrays of independent and identically

distributed random variables. F t
x has a Bernoulli distribution with parameter β, and is

a map F t
x : {move, stay} → {0, 1}, where F t

x(move) = 1 and F t
x(stay) = 0. M t

x possesses
a Bernoulli distribution with parameter α, and is a map M t

x : {strong, weak} → {0, 1},
where M t

x(strong) = 1 and M t
x(weak) = 0.

Step in G beginning at a ⊕-vertex Type Associated Associated
event variable

Step west at an even level 1 trivial none
Step west at an odd level 1’ trivial none
Step from (x, 2t+ 1) to (x, 2t)
if F t

x = 1 2 F t
x = 1 F t

x

Step from (x, 2t+ 1) to (x, 2t)
if F t

x = 0 2’ F t
x = 0 F t

x

Step south from an even to an odd level 2” trivial none
Step from (x, 2t+ 1) to its east neighbor
if M t

x = 1 3 M t
x = 1 M t

x

Step from (x, 2t+ 1) to its east neighbor
if M t

x = 0 4 M t
x = 0 M t

x

Step east at an even level 4’ trivial none
Step north 5 trivial none

Table 1: Definition of types, associated events and associated variables with steps in G
starting at a ⊕-vertex.

In Table 1, we list trivial and non-trivial events. The trivial events are linked to
{	,⊕,�}V and are called trivial. The non-trivial events are defined by their conditions.
Every step in G that has a type also has a chance, which is equal to the chance introduced
in Table 2. The same one-to-one correspondence between steps in G and steps in G will
be employed. If an edge e in G is the dual of an edge e in G, then the dual direction of e
is to the left of the direction of e when moving along e in the given direction. A step in G
has a type if and only if the left side of the step is a ⊕-face.

Table 2 demonstrates the shifts defined for all types. The component of shifts is
represented HS and VS (abbreviations for horizontal shift and vertical shift).

Each step in tour(ω) has a type. It can be decomposed into two paths: the first one
is referred to as the bag and represented bag(ω). In this path, all the types of steps are
different from 5. The second path is named the lid and depicted lid(ω). All its steps have
a type of 5 and it has exactly φ(ω) steps. These easily acceptable statements can be
validated by making a small adaptation of Lemma 3 in [2].
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Step in G having a ⊕-face Tipe Chance Shift
on its left side
Step south across an even level 1 1 (0,−1)
Step south across an odd level 1’ 1 (0,−1)
“F t

x = 1” step east at a sub-level odd 2 β (1, 0)
“F t

x = 0” step east at a sub-level even 2’ 1− β (1, 0)
Step east at a sub-level even 2” 1 (1, 0)
“M t

x = 1” step north across
an odd level 3 α (0, 1)
“M t

x = 0” step north across
an odd level 4 1− α (0, 1)
Step north across an even level 4’ 1 (0, 1)
Step west 5 1 (−1, 0)

Table 2: Definition of types, chances and shift of steps in G with a ⊕-face on its left side.

y = 0

1

2

3

4

5

6

7

x = 0 1 2 3 4 5 6 7 8 9

          

 � �  � �  �   

 � �  � �  �   

 � �  � �  �   

 � �  � �  �   

 � � � � � � �   

 � � � � � � �   

 � � � � � � �   

• • • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • •

• • • • • • •

• • • • • •

• • • • • •
1

1’

1

1’

1

1’

1

1’

1

1’

2 2

2

2 2

2

4

4’

3

4’

4

4’

4

4’

3

4’
5 5 5 5

V0

Figura 1: O grafo dual fica menos visível, mas eu acho que fica mais elegante
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Figura 2: O grafo dual fica mais visível

5

Figure 5: Illustration of a fragment of the graph G, its dual G, and a tour represented by
arrows and their respective types.

7.2 Paths and codes
We will express any sequence of types as a code. The sum of shifts of its terms is called the
shift of the code, and the product of the chances of its terms is referred to as the chance of
the code.

Given a path, p, where all its steps have types, the sequence of these types is known
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as the ”code of p,”represented code(p). Consider a path in G starting at V0, where all its
steps have types and all the basic variables linked to its steps are independent of each
other and from Ω0. This path is called well-placed.

For some ω ∈ Ω0 and a code C, we say that ω realizes C if G comprises a well-placed
path p such that the code of p is equal to C.

real(C) = {ω ∈ Ω0 : ω realizes C}.

Lemma 1. For any code C we have,

π(real(C))
π(Ω0) ≤ chance(C). (19)

Proof. Let C be a code of length n, i.e., C = (c1, . . . , cn), then real(C) is the set of ω ∈ Ω0
which realizes C. If there is no ω ∈ Ω0 which realizes C, then real(C) = ∅ and therefore
(19) is satisfied.

We assume real(C) 6= ∅. If C1 and C2 are two codes such that C1 6= C2, p1 and p2
are two well-placed paths such that code(p1) = C1 and code(p2) = C2, then p1 6= p2.
As follows, for all ω ∈ real(C), there is a unique path p such that code(p) = C. Thus,
computing π(real(C)) is equal to calculating the probability of occurring of the path p
such that code(p) = C. That is, π(real(C)) = P(p). Where, P(p) is the probability of
happening on the path p.

Let be ω ∈ real(C), then the dual graph G comprises a well-placed path p, such that
code(p) = C. Since p is a well-placed path, it starts at V0 and all of its steps have types.
Let p1, . . . , pn the steps of p. To pi we associate the type ci, for each i = 1, . . . , n, and we
take the probability of occurrence of pi, given by the basic variables linked to the steps of
the path p, smaller than or equal to chance(ci) · π(Ω0). Since p is well-placed, the basic
variables related to your steps are independent of each other and Ω0, so

P(p) = P(p1) · . . . · P(pn)
≤ chance(c1) · . . . · chance(cn) · (π(Ω0))n

= chance(C) · (π(Ω0))n. (20)

Hence, since 0 < π(Ω0) < 1 and using (20) we have that

π(real(C))
π(Ω0) ≤ P(p)

(π(Ω0))n ≤ chance(C).

An outcome that can easily be adapted from Lemma 4 in [2] is: Every ω ∈ Ω1 realizes
the code of bag(ω). Using this outcome along with Lemma 1, for each natural number k,
we can acquire:

π(Ωk)
π(Ω0) ≤

∑
π(real(code(bag(ω))))

π(Ω0) ≤
∑

chance(code(bag(ω))), (21)

Where both sums are taken over all diverse code(bag(ω)) for ω ∈ Ωk. To estimate the
last sum, for each natural number k ∈ N, we describe a set of codes, represented by LCk,
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and refer to its elements as k-legal codes. A code C = (c1, . . . , cn) belongs to LCk if it
satisfies the following conditions:

(LC − a) c1 = 1 and cn = 4′.
(LC − b) All the terms of C belong to the list 1, 1′, 2, 3, 4, 4′.
(LC − c) All the pairs (ci, ci+1) belong to the list

11′, 1′1, 1′2, 21, 22, 23, 24, 34′, 44′, 4′2, 4′3, 4′4
(LC − d) HS(C) ≥ k and VS(C) = 0.

(22)

Note that for all k ≥ 1, LCk ⊇ LCk+1. We represent LC1 as LC and designate its
elements simply as legal codes. The definition of legal codes is chosen to fit the code of
bag(ω) as shown in Lemma 2.

Lemma 2. For all ω ∈ Ωk, the code of bag(ω) belongs to LCk.

Proof. Let us prove that the code of bag(ω) satisfies all the conditions of (22).
Proof of condition (LC− a). The code of bag(ω) starts with type 1, because bag(ω) begins
from the east side of the dual face to the vertex (0, 2T ), going from north to south, that
is, it is a south step passing through an even level, therefore, based on Table 2, its type is
1. The code of bag(ω) ends with type 4’, because as the flowers are at an even level, the
last step of bag(ω) is a step north through an even level, so it type is 4’.
Proof of condition (LC − b). The code of bag(ω) can not hold type 5. It remains for us to
indicate that code(bag(ω)) can not contain types 2’ or 2”. Suppose some step of bag(ω)
has type 2’ or 2”, then this step has a root on its left side, which is north. But if the steps
are type 2’ or 2”, then on its south side it also has a root, because there is a northwest
path from this vertex (that is in state ⊕) for some flower, which is impossible since the
steps in tour(ω) cannot separate the roots from one another.
Proof of condition (LC − c). Let us introduce numerous arguments, owing to which all
the combinations of types (ci, ci+1), not included in our list, are impossible in the code of
bag(ω).

• Pairs, in which the first term is in the set {1, 3, 4} and the second term is in the set
{1, 2, 3, 4}, are impossible because the first term ends at an even sub-level, but the
second term starts at an odd sub-level.

• Pairs, in which the first term is in the set {1′, 2, 4′} and the second term is in the
set {1′, 4′}, are impossible, because the first term ends at an odd sub-level, but the
second term starts at an even sub-level.

• Pairs, in which the first term is in the set {1, 1′} and the second term is in the set
{3, 4, 4′}, are impossible. If the pairs gotten from these sets could happen, then as
the first type is a south pass and the second type is a north pass, they would be
on the same vertical edge of G. But the terms of the first set need a ⊕-face on its
east side, while the terms of the second set need a 	-face on its east side because If
bag(ω) comprises of a step type 3, 4 or 4’, then this step has a 	-face on its right
(that is, east) side, which is absurd.

• Pairs, where the first term is in the set {3, 4} and the second term is 1’ are impossible
because they have to be on the same edge, but the face on the east side of type 3 or
4 steps must be in the state 	, while the face on the east side of type 1’ step must
be in the state ⊕.

18



• Pairs, where the first term is 4’ and the second term 1, are impossible because they
have to be on the same edge, but the face on the east side of type 4’ step must be in
the state 	, while the face on the east side of type 1 step must be in the state ⊕.

Proof of condition (LC−d). We have that the path tour(ω) is a concatenation of the paths
bag(ω) and lid(ω), where lid(ω) has φ(ω) steps type 5, all of which have shift (−1, 0), then
the shift of lid(ω) is (−φ(ω), 0). As follows, as the contour tour(ω) begins and ends in V0,
follow that bag(ω) has x east steps, where x ≥ φ(ω) (if there are not murders x = φ(ω)).
From condition (LC − b) the only east step that bag(ω) can have is the type 2, whose shift
is (1, 0), then HS(bag(ω)) = x ≥ φ(ω) ≥ k.

Since the contour tour(ω) starts and ends at V0 and the path lid(ω) only has west
steps (type 5), then the number of steps south (types 1 and 1’) is equal to the number of
steps north (types 3, 4 and 4’) in the path bag(ω). Let’s call this number of steps north,
therefore the number of steps south, y. Since all south types have shift (0,−1) and all
north types have shift (0, 1) follows that VS(bag(ω)) = −y + y = 0.

Using Lemma 2 and (21), we get

π(Ωk)
π(Ω0) ≤

∑
C∈LCk

chance(C). (23)

We will simplify our task by lowering the types to four major types to make our
numerical estimation easier to visualize. The elements of the set {1, 2, 3, 4} will be called
the main types. All the quantities defined for types are also valid for major forms, together
with shifts and chances (as illustrated in Table 2).

A main code is a finite sequence comprising only major types. For any code C, the
main code gotten from C by removing all non-main types is represented short(C). To
simplify our task, we will deal with short(code(bag(ω))) rather than code(bag(ω)). For
every natural number k, we define a set of codes called k-legal main codes, denoted by
LMCk. A k-legal main code is a main code C = (c1, . . . , cn) that satisfies the following
conditions: 

(LMC − a) c1 = 1.
(LMC − b) For every i = 1, . . . , n− 1 it is impossible that

(ci = 1, ci+1 = 3) or (ci = 3, ci+1 = 1) or
(ci = 1, ci+1 = 4) or (ci = 4, ci+1 = 1).

(LMC − c) cn is equal to 3 or 4.
(LMC − d) HS(C) ≥ k
(LMC − e) VS(C) = 0.

(24)

Note that LMCk ⊇ LMCk+1 for all k ≥ 1. We refer to LMC1 as LMC and call the
elements of LMC simply legal main codes. It is reported that any legal main code has a
length of at least three, derived from (LMC − a), (LMC − b), and (LMC − c).

From this point onward, we represented by C the legal main codes and by C ′ the legal
codes. Hence, for any legal main code C, we will represent by long(C) the legal code C ′
such that C = short(C ′).

We will establish a bijection between the major legal codes and the legal codes. Let us
represent this bijection by

long : LMC → LC.
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Given C ∈ LMC, long(C) = C ′ is obtained through the following procedure:
(a) We start with C.
(b) After every 1 we insert 1’.
(c) After every 3 we insert 4’.
(d) After every 4 we insert 4’.

(25)

The inverse of the long application is the short application, which takes a legal code C ′
and eradicates the types 1’ and 4’.

We will estimate the sum on the right side of (23). Remember that given C ′ ∈ LCk there
is unique C ∈ LMCk such that C ′ = long(C). From (25), C and C ′ vary by types 1’ and
4’, which has chance 1. Therefore, for C ′ = long(C) it follows that chance(C ′) = chance(C).
So, ∑

C′∈LCk

chance(C ′) =
∑

C∈LMCk

chance(long(C))

=
∑

C∈LMCk

chance(C).

It remains for us to indicate that
∞∑
k=1

∑
C∈LMCk

chance(C) ≤ α2

55 .

Note that ∞∑
k=1

∑
C∈LMCk

chance(C) =
∑

C∈LMC

HS(C) · chance(C).

Thus, our interest is to prove

∑
C∈LMC

HS(C) · chance(C) ≤ α2

55 .

7.3 A recurrence relation
Given x, y ∈ Z and z ∈ N with k = 1, 2, 3, 4, let us represent the sum of probabilities of
main codes satisfying conditions (LMC − a) and (LMC − b) by Sk(x, y, z). The values of
HS and VS are equal to x and y respectively, and z terms are gotten, with the last term
being k. Major codes that satisfy (LMC − e) have VS equal to zero. It can be resolved
from conditions (LMC − c), (LMC − d), and (LMC − e) in equation (24) that

∑
C∈LMC

HS(C) · chance(C) ≤
∞∑
x=1

∞∑
y=0

∞∑
z=1

x(S3(x, y, z) + S4(x, y, z)). (26)

For technical reasons, we will adjust the type 3 shift to (−1, 1). This alteration does not
influence the number of contours tour(ω) or the number of pluses within these contours.

Considering (LMC − a) of (24), the Sk(x, y, z) satisfy the initial condition

Sk(x, y, 1) =
{

1, if x = 0, y = −1 and k = 1,
0, in all the other cases,
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by the (LMC − b) the numbers Sk(x, y, z) satisfy
S1(x, y, z + 1) = S1(x, y + 1, z) + S2(x, y + 1, z)
S2(x, y, z + 1) = β[S1(x− 1, y, z) + S2(x− 1, y, z) + S3(x− 1, y, z) + S4(x− 1, y, z)]
S3(x, y, z + 1) = α[S2(x+ 1, y − 1, z) + S3(x+ 1, y − 1, z) + S4(x+ 1, y − 1, z)]
S4(x, y, z + 1) = (1− α)[S2(x, y − 1, z) + S3(x, y − 1, z) + S4(x, y − 1, z)]

We denote

Si(z) =
∞∑

x=−∞

∞∑
y=−∞

p−xq−ySi(x, y, z), for each i = 1, 2, 3, 4,

where p and q are positive parameters such that x < p−x and 1 < q−y. This way the sum
in (26) is bounded superiorly by

∞∑
z=1

[S3(z) + S4(z)].

Furthermore, they satisfy the initial condition S1(1) = q and S2(1) = S3(1) =
S4(1) = 0. Likewise, we get the following recurrence conditions

S1(z + 1) = q[S1(z) + S2(z)],
S2(z + 1) = β/p [S1(z) + S2(z) + S3(z) + S4(z)] ,
S3(z + 1) = pα/q [S2(z) + S3(z) + S4(z)] ,
S4(z + 1) = (1− α)/q [S2(z) + S3(z) + S4(z)] .

Owing to relation between S3(z) and S4(z), we will define the following quantities

S∗1(z) = S1(z), S∗2(z) = S2(z), S∗3(z) = S3(z) + S4(z),

which has the following initial condition S∗1(1) = q, S∗2(1) = S∗3(1) = 0. Also,
S∗1(z + 1) = q[S∗1(z) + S∗2(z)],
S∗2(z + 1) = β/p[S∗1(z) + S∗2(z) + S∗3(z)],
S∗3(z + 1) = r[S∗2(z) + S∗3(z)],

where, r = pα + (1− α)
q

.

Let be S∗(z) = (S∗1(z), S∗2(z), S∗3(z)). So, we rewrite the recurrence equations by
S∗(z + 1) = S∗(z) ·B. Therefore, S∗(z) = S∗(1) ·Bz−1, where

B =

 q β/p 0
q β/p r
0 β/p r

 .
Let us consider

N =

 q β/p 0
q β/p r
q β/p r

 .
Since B ≤ N , then

S∗(z) ≤ S∗(1) ·N z−1.
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The matrix N has three diverse eigenvalues, namely,

λPF = r + q + β/p+
√

∆
2 , λ2 = r + q + β/p−

√
∆

2 , λ3 = 0,

where ∆ = (r + q + β/p)2 − 4qr and λPF is the Perron-Frobenius eigenvalue [20]. For
λPF < 1, we must possess

β < p(1 + qr − q − r). (27)
The p and q values that maximize the right side of (27) are

p = 4α− 3 +
√

9− 8α
8α and q =

√
pα + 1− α. (28)

Note that p and q are reducing as a function of α ∈ (0, 1), and for each α, p < q < 1.
Given p, q and α. The λPF is an increasing function pertaining to β. For the values of

p and q in (28), we have α
2

55 < p(1 + qr − q − r). Thus, we have that λPF < 1 for

β <
α2

55 . (29)

From now on, we will employ the upper bound of β on the right side of (29).
The eigenvectors linked to λPF , λ2 and λ3 are

vλP F
=

(
v11,

β

pq
v11,

rβ

(λPF − r)pq
v11

)
with v11 ∈ R \ {0},

vλ2 =
(
v21,

β

pq
v21,

rβ

(λ2 − r)pq
v21

)
with v21 ∈ R \ {0},

vλ3 = (0, v31,−v31) with v31 ∈ R \ {0}.

As well-known, we can write
N = V −1DV,

where

D =

 λPF 0 0
0 λ2 0
0 0 0

 , V =

 1 a b
1 a c
0 1 −1


for a = β/pq, b = rβ/((λPF − r)pq) and c = rβ/((λ2 − r)pq). In addition,

V −1 =


−a+ c

b− c
a+ b

b− c
−a

1
b− c

− 1
b− c

1
1

b− c
− 1
b− c

0

 .

Let us calculate S∗(1)N z−1, where S∗(1) =
(
q 0 0

)
.

S∗(1)Nk = S∗(1)V −1DkV

= q
(
−a+ c

b− c
a+ b

b− c
−a

) λkPF 0 0
0 λk2 0
0 0 0


 1 a b

1 a c
0 1 −1


= q

(
−a+ c

b− c
λkPF + a+ b

b− c
λk2 −

a+ c

b− c
aλkPF + a+ b

b− c
aλk2 −

a+ c

b− c
bλkPF + a+ b

b− c
cλk2

)
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Using k = z − 1,

S∗3(z) ≤ q

(
−a+ c

b− c
bλz−1

PF + a+ b

b− c
cλz−1

2

)
.

As λPF < 1, we got from the Perron-Frobenius theorem that |λ2| < 1. So,
∞∑
z=1

S∗3(z) ≤ −a+ c

b− c
bq
∞∑
z=0

λzPF + a+ b

b− c
cq
∞∑
z=0

λz2

= −a+ c

b− c
bq

1
1− λPF

+ a+ b

b− c
cq

1
1− λ2

.

As

a+ b = βλPF
pq(λPF − r)

, a+ c = βλ2

pq(λ2 − r)
, b− c = rβ(λ2 − λPF )

pq(λPF − r)(λ2 − r)
,

it follows,

−a+ c

b− c
bq = − βλ2

p(λ2 − λPF ) and a+ b

b− c
cq = βλPF

p(λ2 − λPF ) .

Thus,
∞∑
z=1

S∗3(z) ≤ − βλ2

p(λ2 − λPF )(1− λPF ) + βλPF
p(λ2 − λPF )(1− λ2)

≤ β

p(λPF − λ2)

[
λPF

1− λPF
− λPF

1− λ2

]

= βλPF
p(1− λPF )(1− λ2) . (30)

The expression (30) will be denoted by UP (p, q, α, β).
Proof of item (A. 1) of Theorem 1. Note that, for β ∈ (0, α2/55), UP (p, q, α, β) is
growing as a function of β. So, if UP (p, q, α, α2/55) is less than 1, then UP (p, q, α, β) will
be less than 1. As (1− λPF )(1− λ2) = 1 + qr − q − r − β/p,

UP (p, q, α, β) = βλPF
p(1 + qr − q − r)− β .

Therefore,

UP (p, q, α, β) < 1 ⇐⇒ β(λPF + 1) < p(1 + qr − q − r). (31)

Supposing p = (4α− 3 +
√

9− 8α)/8α, q =
√
pα + 1− α and r = (pα+ 1− α)/q, one

can prove
p(1 + qr − q − r) ≥ α2

27 .

So, when β = α2/55 we have 2β < p(1 + qr − q − r). Once 0 < λPF < 1,

β(λPF + 1) < p(1 + qr − q − r).

Thus,

UP

(
4α− 3 +

√
9− 8α

8α ,
√
pα + 1− α, α, α

2

55

)
< 1.
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At this point, we will introduce some definitions and outcomes which was previously
described in [8, 9].

For words W = (a1, . . . , am) and V = (b1, . . . , bn), whose |W | ≤ |V |, we say positions
of W in V to the integer value in the interval [0, n−m]. The word W enters word V at
the position k if

∀ i ∈ Z : 1 ≤ i ≤ m⇒ ai = bi+k.

We say that a word W is self-overlapping case there is a word V such that |V | < 2 · |W |
and word W enters word V at two different positions. Therefore, we say that a word is
self-avoiding case it is not self-overlapping.

Now, we shall elucidate as a substitution operator acts on M. Lets ρ ∈ [0, 1] be.
Fixed word G and word H, where G is self-avoiding, a generic substitution operator,
informally speaking, turns every entrance of the word G in a long word into a word H
with probability ρ or does not alter with a probability 1− ρ independently of states of all
the other components.

Let P1, . . . ,Pj be a finite sequence of substitution operators and we assume P =
P1 ◦ · · · ◦ Pj. We represent the generalized discrete substitution process by the sequence
of measures ν, νP, νP2, . . . , νPt, . . . , where Pt signifies the t-th composition of operator P.
So,

νt(W ) = νPt(W ) for every word W.

Toom et. al. (2011). Let us consider a generalized discrete substitution approach
νn = νPn, where P = P1P2 · · ·Pj as in the above definition. Let R ⊂ AZ be some subset
of σ-algebra AZ. Then, if νn(c) ≤ δ (respectively νn(c) ≥ ε) for all c ∈ R, then P has an
invariant measure µ such that µ(c) ≤ δ (respectively µ(c) ≥ ε) for every c ∈ R, where
δ, ε > 0 are positive constants.

Proof of item (B. 1) of Theorem 1. We represent cylinder C = {x ∈ AZ : xi0 =
⊕ for some i0 ∈ Z} and δ = UP (p, q, α, β), where p = (4α − 3 +

√
9− 8α)/8α, q =√

pα + 1− α and β ∈ (0, α2/55). Through (31),

µt(⊕) = δ	(FβCα)t(⊕) ≤ UP (p, q, α, β), for all t ∈ Z+.

So, by Toom et. al., (2011), the operator FβCα has a invariant measure ν. such that

ν(⊕) ≤ UP (p, q, β, α) < 1.

8 Open problems
Here, we introduce some questions motivated by our research. We have demonstrated
that µt exhibits the behaviors of ergodicity and non-ergodicity. Nevertheless, the lack of a
certain kind of monotonicity does not enable us to affirm the operator behavior, i.e.

Problem 1. There is B ⊂ (0, 1) such that, for α, β ∈ B if limt→∞ µt(⊕) = 1, then
limt→∞ ν(FβCα)(⊕) = 1, for all ν ∈M.
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We suspect that our operators have a certain kind of monotonicity, in the following
sense

Problem 2. Let α ∈ (0, 1] be fixed and values β1 and β2 belong to (0, 1). If β1 < β2, then

δ	(Fβ1Cα)t(⊕) < δ	(Fβ2Cα)t(⊕) for each t ∈ N.

A more general scenario where particles alter their stimulus, turning a positive stimulus
into a negative stimulus or turning a negative stimulus into a positive, is a case to be
considered. It is summarized as follows

Problem 3. Prove analogs of Theorems 1 and 2 for the process

δ	(FγβCα)t,

in which with an independent way plus changes to minus with probability β and minus
becomes plus with probability γ.
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