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Abstract

An one-dimensional interacting particle system is revisited. It has discrete time
and its components are located in the integers set. These components can disappear
in the functioning process. Each component assumes two possible states, called plus
and minuses and interact at every time step only with their nearest neighbors. The
following two transformations happen: The first one is called flip, under its action
a component in state minus turns into a plus with probability β. The second
one is called annihilation, under its action, whenever a component in state plus is
a left neighbor of a component in state minus, both components disappear with
probability α. Let us consider a set of initial measure to the process. For these
measures, we show the upper bound for the mean time of convergence, which is
a function of the initial measure. Moreover, we obtain upper bound to the mean
quantity of minuses on the process in each time step. Considering the initial measure
concentrated at the configuration whose components are in the state minuses, we
improved a well-known result, that the process is non-ergodic when β < α2/250.
Now, we are able to offer non-ergodicity when β < 9α2/1000. Also, we established
new conditions to the ergodicity of the process. Finally, we performed some Monte
Carlo simulations for this process.

1 Introduction and Main Results
From the mid-twentieth century onwards, the development of a new part of stochastic
process theory, called the local interaction theory of stochastic processes, has begun to
be developed, which is now better known as interacting particles systems [6, 2]. New
kinds and models of interacting particle systems have appeared. These systems do not
quite fit into the standard theory [2, 6, 13]. For example, the assumption that the set of
components does not change in the process of interaction is considered. This assumption is
not the only possible one. Here we investigate a process belonging to a class of interacting
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particle systems whose the set of components themselves appear or disappear during the
process of functioning. We call such process variable length [13, 14, 19, 20].

The aims in this study is to provide theoretical understanding of this new class through
the development of analytical techniques and computational modeling. This step precedes
applications to real situations. Another study of similar processes is presented in Maly-
shev’s works [8, 9], which are motivated by some connections between computer science
and quantum gravity.

Our process, which we will call Flip-Annihilation, was proposed in [19] and studied
analytically and computationally in [11, 12, 13, 20]. This process has a discrete time,
whose components are located in Z. Each component assumes two states, called plus and
minus and denoted by ⊕ and 	, respectively. Informally speaking, in each step of time
two transformations occur:

• The first called flip and denoted by Fβ transform any minus into plus with proba-
bility β independently from each other.

• The second called annihilation and denoted by Aα is variable length and under
its action whenever a plus is the left neighbor of a minus, both disappear with
probability α, independently from other occurrences of this type.

As in [19], we denote
µt = δ	(FβAα)t, (1)

where δ	 is the measure concentrated in the configuration all minus, whose all particles
assume the state minus.

In this work, we define a class of measures, which are in some sense “close” of an
invariant distribution of our process and we verify: the upper bound for the mean time
that it takes to reach the invariant distribution also we verify in each step of time t, the
upper bound of the mean number of components in the state minus in the system. In
both cases, these upper bounds are functions of the initial distribution.

The Flip-Annihilation shows a kind of phase transition [19]. In the parameter space
there are two regions: at one, (1) is ergodic; at another one (1) is non-ergodic. In this
work we expanded this non-ergodic region. Our result put us closer to the “critical curve”
case there is.

In our class, we called alphabet any non-empty finite set A, and call its elements letters.
We call a word in the alphabet A any finite sequence of terms, everyone of which is an
element of A. The length of a word W is the number of letters in it and is denoted by |W |.
Any letter may be treated as a word of length one. There is the empty word, denoted
by Λ, whose length is zero. Let us call the dictionary and denote by dic(A) the set of
words in the alphabet A. We denote by Z the set of integer numbers and AZ the set of
bi-infinite sequences, whose terms are elements of A.

Let us denote by A the discrete topology on A. We consider probability measure
on the σ-algebra AZ on the product space AZ endowed with the topology - product of
discrete topologies on all the copies of A. Since A is finite, it is compact in the discrete
topology, and by Tychonoff’s compact theorem [10], A also is compact.

In the usual way we define translation on Z, then on AZ, then on the set of normed
measures on AZ and call a measure uniform if it is invariant under all translations. This
is, for all word W = (a1, . . . , an),

µ(W ) = µ(a1, . . . , an) = µ(si+1 = a1, . . . , si+n = an),
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for all i ∈ Z. We denote by MA the set of uniform probability measures in AZ.
At this point we will bring some definitions and results described in [20, 14].
Given two words W = (a1, . . . , am) and V = (b1, . . . , bn), where |W | ≤ |V |, we call the

integer number in the interval [0, n −m] positions of W in V . We say that W enters V
at a position k if

∀ i ∈ Z : 1 ≤ i ≤ m⇒ ai = bi+k.

We call a word W self-overlapping if there is a word V such that |V | < 2 · |W | and
W enters V at two different positions. A word is called self-avoiding if it is not self-
overlapping. In particular, the empty word, every word consisting of one letter and every
word consisting of two different letters are self-avoiding.

A generic substitution operator acts fromMA toMA as follows: given two wordsG and
H, where G is self-avoiding, and a real number ρ ∈ [0, 1], a generic substitution operator,
informally speaking, substitutes every entrance of the word G in a long word by the word
H with a probability ρ or leaves it unchanged with a probability 1 − ρ independently of
states of all the other components. We denote this operator by (G ρ→ H).

Let ν ∈M and P = P1 ◦ · · · ◦Pj, where P1, . . . ,Pj be a finite sequence of substitution
operator. Then we define the generalized discrete substitution process νt, where ν0 = ν,
as follows:

νt(W ) = νPt(W ) for every word W.

and Pt denotes the t-th composition of operator P.
Toom et. al., (2011). Let us consider a generalized discrete substitution process νn =
νPn, where P = P1P2 · · ·Pj as in above definition. Let R ⊂ AZ be some subset of σ-algebra
AZ. Then, if νn(c) ≤ δ (respectively νn(c) ≥ ε) for all c ∈ R, then P has an invariant
measure µ such that µ(c) ≤ δ (respectively µ(c) ≥ ε) for every c ∈ R, where δ, ε > 0 are
positive constants.

Lets AZ = {	,⊕}Z and x, y ∈ AZ. We say that two configurations x and y are close
to each other if the set {i ∈ Z : xi 6= yi} is finite. A configuration is called a island of
minus if it is close to the configuration “all plus”, and we denote the set of island of minus
by ∆. Given x ∈ ∆, we define the population of x, and denote by Pop(x), as the quantity
of minus in the island x, this is,

Pop(x) = #{i ∈ Z : xi = 	},

where #(·) denotes the cardinality of the set.
We denote by A	 the set of normalized measures in the countable set, ∆. A measure

belonging to A	 is called an archipelago of minus. From now on, case do not stated, µ
denotes an archipelago of minus.

The operators Fβ : A	 → A	 and Aα : A	 → A	 are well defined. Thus, if µ is fixed,
it is possible to define the random variable

τµ = inf
{
t ≥ 0 : µ(FβAα)t = δ⊕

}
. (2)

The infimum of the empty set is ∞. The random varianle τµ denotes the time to attain
the configuration “all plus” having FβAα, started on µ.

Note that µ =
∞∑
i=1

kiδxi , where k1 > 0, k2 > 0, . . . ; k1 + k2 + · · · = 1 and xi ∈ ∆ for

i ∈ N. We define the maximum population of µ as

M(µ) = max
{

Pop(xi) : µ =
∞∑
i=1

kiδxi

}
.
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If there is no such maximum, we say that M(µ) =∞.
Generally, when we talk about probabilistic cellular automata, a process P means a

sequences of measure
µ, µP, µP2, . . . , µPt, . . .

However, we can define this process through a sequence

x0, x1, x2, . . . , xt, . . . (3)

where x0 has distribuition µ and xt has distribuition µPt. This definition is intuitive and
can be found in more detail in [7].

For x ∈ ∆ consider (3) to describe the process. Lets δx the distribution concentrated
in x and δx(FβAα)t the distribution of xt, we define the population of x in the time t by
Pop(xt). This random variable represents the quantity of minus on the island x on the
t-th time step. Given µ ∈ A	, we define the maximum population of µ in the time t by

M(µ, t) = max
{

Pop
(
(xi)t

)
: µPt =

∞∑
i=1

kiδ(xi)t

}
,

where (xi)t denotes the i-th island in time t and if there is no such maximum, we say that
M(µ, t) =∞.

It is clear for a δ-measure concentrated in a configuration x ∈ ∆: if α > 0 or β > 0
we have that δx(FβAα)t tends to δ⊕ when t tends to infinity. However, it is not clear how
fast is this convergence and how this quantity of minus behaves in the evolution of the
system. Theorems 1 and 2 provide us information in this direction.

Theorem 1. Given µ ∈ A	 and τµ as defined in (2). If M(µ) is finite then

E(τµ) ≤


fµ(α), if α ≥ M(µ)

gµ(β) ,

gµ(β), if α < M(µ)
gµ(β)

where fµ(α) = M(µ)
α

and gµ(β) =
M(µ)∑
i=1

1
1− (1− β)i .

Theorem 2. Given natural value t and µ ∈ A	. If M(µ, t) is finite then

E (M(µ, t)) ≤ (1− β)t−1
(

M(µ) + αβM(µ) − α
)
.

We denote the Theorems 1, 2 and 3 in [19] respectively by (r1), (r2’) and (r3). The
results (r1) If 2β > α, the measures µt tend to δ⊕ when t→∞ and (r2’) For all natural
t the frequency of pluses in the measure µt does not exceed 300 · β/α2 shows that there is
some kind of phase transition for (1). In [11], the (r2’) was improved; in fact, it allows
us to substitute 250 instead of 300. The (r2’) after this modification is denoted by (r2).

About ergodicity of our operator, it was shown: (r3) Take any µ ∈ M{	,⊕} and

suppose that β > 0 and µ(	) ∈
(

0, 1
2(1− β)

)
. Then the measures µ(FβAα)t tend to δ⊕

when t→∞.
Theorem 3 give us a new condition for which µ(FβAα)t converges to δ⊕, and Theorem

4 give us a region where µt is non ergodic. In fact, contains the region of non-ergodicity
described in (r2).
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Theorem 3. Given µ ∈ M{	,⊕}. If µ(	) ∈
(

0, β

2α(1− β)

)
, then µ(FβAα)t → δ⊕, when

t→∞.

Theorem 4. For α ∈ (0, 1). If β < 9α2

1000 then

(A. 4) for all natural value t, µt(⊕) < 1;

(B. 4) there is a measure, ν, such that ν(FβAα) = ν, where ν(⊕) < 1.

2 Two auxiliary operators
Here, we introduce the operators Neutralization and Elimination.

Given Ω� = {⊕,	,�}Z, where � is called dot. We denote by ∆� the set containing
all x ∈ Ω� such that Pop(x) is finite. Thus, there is a copy of ∆ in ∆�, this fact will
be used by us. Note that, if x ∈ ∆�, then Pop(x) is finite, however can exist infinite
positions in the states plus or dot. That is, if x ∈ ∆�, then there are indices i0, j0, with
i0 < j0 such that xi0 = xj0 = 	 and xk 6= 	 for all k < i0 and k > j0. Now, we define
by A� the set of normalized measures in the countable set, ∆�. The symbol �n denotes
a word with n consecutive letters equal to �. In particular, we denote ⊕	 by ⊕ �0 	.
Let us consider an operator, which we will call neutralization, Nα : A� → A�, which
acts as follows: every word ⊕�n 	 is transformed into a word �n+2 with probability α,
or remains unchanged with probability 1 − α, for all n ∈ N. Nα is not variable length
operator. It can be shown that the operator Nα is linear.

If a particle goes to the state �, it remains in this state forever.

Figure 1: Illustration of the action of operators Nα and Aα on an island whose Pop(x) = 3.

In Figure 2, we illustrate a possible action (it has a positive probability of occuring) of
the operators annihilation and neutralization in a fragment of an island x ∈ ∆. The oper-
ator annihilation eliminate the positions. On the other hand, the operator neutralization
does not eliminates the positions, it acts changing the state of the components.

Given x ∈ ∆ and δx its respective normalized measure. By the definitions of Nα and
Aα, we have

δxAα(	) = δxNα(	)
1− δxNα(�) .

So, for each t ∈ N

δxAtα(	) = δxNt
α(	)

1− δxNt
α(�)

. (4)
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Now we will describe the operator elimination Eα : A� → A�, this is a particular case
of the operator neutralization. Informally speaking, given x ∈ ∆ (that is, its copy in ∆�)
the operator elimination acts on the minus leftmost and transforms the word ⊕�n	 into
�n+2 with probability α or it remains the same with probability 1 − α. The operator
elimination transforms only one occurrence of the word ⊕ �n 	 into �n+2. Since Eα is
a particular case of the operator neutralization and this is linear. Thus Eα is also linear.
In probabilistic cellular automata the standard operators are linear, and once that the
operators Fβ, Nα and Eα are in this context. We concluded their linearity.

Lemma 1. Given µ ∈ A	 we have

µAα(	) ≤ µEα(	)
1− µEα(�) .

Proof. We know that there is a copy of A	 in A�, so µEα for all µ ∈ A	, makes sense.
Moreover, given µ ∈ A	 we can write µ as a convex combination of δxi measures where
xi ∈ ∆ for all i ∈ N. Consequently, from (4) it follows that

µAα(	) = µNα(	)
1− µNα(�) .

Since Eα is a particular case of Nα, in which only one occurrence of the word ⊕ �n 	 is
transformed into �n+2, for some n ∈ N, with probability α, it follows that

µNα(	)
1− µNα(�) ≤

µEα(	)
1− µEα(�) .

3 The operator FβEα and the process Z
Initially, we will describe a correspondence between the operator FβEα acting on δ-
measures, δx, where x belongs to the copy of ∆ in ∆� and the process Z.

• About operator Fβ, which transforms minus into plus with probability β indepen-
dently of what happen in the other positions. This is analogous with the first half
step of the process Z.

• About operator Eα, which transforms a single component in the state minus into
state point with probability α. This is analogous with the second half step in the
process Z.

Thus, we associate the operator FβEα (acting first Fβ and then Eα in this order) with
the action of the first half step and second half step of process Z.

The operators Fβ and Eα are linear. Hence FβEα is linear. Therefore, given µ belonging
to a copy of A	 in A�, µ is a convex combination of δ-measures. So, once we describe
FβEα acting in δ-measures, we define µFβEα.

For x ∈ ∆� we have Z0 = Pop(x) and Zt matches the quantity of minus on the island

x in time t, xt, which has distribution δx(FβEα)t. Note that when µ =
∞∑
i=1

kiδxi we have

P
(
Z0 = Pop(xi)

)
= ki.
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4 Proof of Theorems 1 and 2
Let us consider two Markov Chains, whose state set is Z+. We will denote its transition
probability from a state i to a state j by pij. For simplicity, sometimes we will use the
notation M.C., instead of Markov Chain.

Our first Markov Chain will be illustrated from the following scenario: there is an urn
with n balls in the initial moment. In each moment each one of the balls can be removed
with probability β or remain with probability 1− β, independently from each other. Its
transition probabilities

pmn =


0, if m < n;(
m

n

)
(1− β)nβm−n, if m ≥ n,

(5)

where β ∈ [0, 1].
Our second Markov Chain has transition probabilities

p00 = 1,
pnn−1 = qn, pnn = 1− qn, pnj = 0 if j /∈ {n, n− 1}, (6)

with qn ∈ [0, 1].
Considering (5) and (6), if qn ∈ (0, 1) and β ∈ (0, 1), then the absorption probability

is one. Given the M. C. (Xt)t∈N we define the random variable

Hn = inf{t ∈ N : Xt = 0 and X0 = n}.

By simplicity, we will denote kn = E(Hn). From now on, we will denote by X = (Xt)t∈Z+

and Y = (Yt)t∈Z+ the Markov Chains given by (5) and (6) respectively.
For Y

kYn =
n∑
i=1

1
qi

for n ≥ 1. (7)

and for X
kXn =

∞∑
i=0

[1− (1− (1− β)i)n]. (8)

As far as we know, the expression (8) can not be represented by a simple elementary form.
The equation (7) with qi = 1− (1− β)i is

kYn =
n∑
i=1

1
1− (1− β)i . (9)

Using a coupling on the Markov chains X and Y , we are able to prove: if X0 = Y0 = n,
then P(Xt ≤ Yt) = 1 for all t ∈ Z+. Thus, we conclude that kXn ≤ kYn . More precisely,

kXn =
∞∑
i=0

[1− (1− (1− β)i)n] ≤
n∑
i=1

1
1− (1− β)i = kYn . (10)

We will utilize the right side of (10) as an upper bound to the absorption mean time of
X.

We will define a M. C., as a kind of composition between (Xt)t∈Z+ and (Yt)t∈Z+ . The
following scenario describes what happens in a time step: at the first half step our urn
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has n balls, each ball will be removed with probability β or it will remain with probability
1−α; in the second half step, we take one and only one of the balls that remained in the
urn, it will be removed with probability α or it will remain with probability 1− α.

After completing the second half step, we have completed one time step in this new
M. C., which we will denote Z = (Zt)t∈Z+ .

Let us consider two sequences of independent random variables (ati)i,t∈N and (ct)t∈N,
where

ati =
{

0, with probability 1− β;
−1, with probability β. and ct =

{
0, with probability 1− α;
−1, with probability α.

Note that Zt describes the balls number remains in the urn at time t given that Z0 = n.
The expression (11) give us an inductive representation of Zt,

Zt+1 = Zt +
Zt∑
i=1

at+1
i + ct+1χ{Ψt>0} (Ψt) , (11)

where χ{·}(·) is the indicator function and Ψt = Zt +
Zt∑
i=1

at+1
i . Our goal is to calculate the

mean number of balls in time t+ 1 given that we start with n balls.

Proposition 1. Let us consider the process Z and its inductive definition in (11), so

E(Zt+1) = (1− β)E(Zt) + α[E(βZt)− 1]. (12)

Proof. From (11)

E(Zt+1) =
∞∑
k=0

E(Zt+1|Zt = k)P(Zt = k)

=
∞∑
k=0

[
E
(
k +

k∑
i=1

at+1
i

)
P(Zt = k) + E

(
ct+1χ{Ψt>0} (Ψt)

)
P(Zt = k)

]
.

Thus,

E(Zt+1) = (1− β)
∞∑
k=0

kP(Zt = k)− α
∞∑
k=0

P
(
−

k∑
i=1

at+1
i < k

)
P(Zt = k).

Using that

P
(
−

k∑
i=1

at+1
i < k

)
= 1− βk.

We conclude

E(Zt+1) = (1− β)E(Zt) + α

[ ∞∑
k=0

βkP(Zt = k)− 1
]
.

Since E(βZt) =
∞∑
k=0

βkP(Zt = k), the proof of this proposition is concluded.

Using (12), and by induction in t, we get

E(Zt+1) = (1− β)t+1Z0 + α
t∑
i=0

(1− β)i(E(βZt−i)− 1). (13)
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Since E(βZt) − 1 ≤ 0 for all t ∈ N and considering only when i = t on the right side
of (13) we get

E(Zt+1) ≤ (1− β)t+1Z0 + α(1− β)t(E(βZ0)− 1) ≤ (1− β)t(Z0 + αβZ0 − α). (14)

Proof of Theorem 1.
We know that

τµ = inf{t ≥ 0 : µ(FβAα)t = δ⊕} = inf{t ≥ 0 : µ(FβAα)t(	) = 0}.

There is a copy of A	 in A�. Thus we can write the following relation due to Lemma 1

µ(FβAα)t(	) ≤ µ(FβEα)t(	)
1− µ(FβEα)t(�) , for each t ∈ N.

Since µ ∈ A	 we can write µ as a convex combination of δxi where xi ∈ ∆. And using
the fact that Eα is linear we have

τµ ≤ inf{t ≥ 0 : µ(FβEα)t(	) = 0}
= inf{t ≥ 0 : δx1(FβEα)t(	) = δx2(FβEα)t(	) = · · · = 0}
= inf{t ≥ 0 : δξ(FβEα)t(	) = 0} (15)

where ξ = xM(µ).
Let us denote (15) by τξ.
We know that δξ(FβEα)t(	) has a relation with the Markov Chain (Zt)t∈Z+ . The

process Z is the composition of the Markov Chains X and Y . Let us consider Z0 = M(µ).
We denote the absorption time of X and Y by

τXM(µ) = inf{t ≥ 0 : Xt = 0 and X0 = M(µ)} and τYM(µ) = inf{t ≥ 0 : Yt = 0 and Y0 = M(µ)}

Since Z is the composition of X and Y , acting in this order, first X and then Y , in
each step time, it follows that E

(
τZM(µ)

)
≤ min

{
E
(
τXM(µ)

)
,E
(
τYM(µ)

)}
. Thus, from

(10)

E(inf{t ≥ 0 : δξFtβ = δ⊕}) = E
(
τXM(µ)

)
≤

M(µ)∑
i=1

1
1− (1− β)i = gµ(β),

and
E(inf{t ≥ 0 : δξEtα = δ⊕}) = E

(
τYM(µ)

)
= M(µ)

α
= fµ(α).

Note that, if α ≥ M(µ)/gµ(β), then min{gµ(β), fµ(α)} = fµ(α). On the other hand, if
α < M(µ)/gµ(β), then min{gµ(β), fµ(α)} = gµ(β).

Therefore,
E(τµ) ≤ E(τξ) = E

(
τZM(µ)

)
.

Proof of Theorem 2. Let us consider the initial distribution, δx, with x ∈ ∆. In this
case,

M(µ, t) = Pop(xt).
From the association among (Zt)t∈Z+ , FβEα and FβAα, it follows

P
(
Pop(xt) ≤ Zt

)
= 1.
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So,
E(M(µ, t)) = E(Pop(xt)) ≤ E(Zt).

Using identities Z0 = M(µ) = Pop(x) and (14),

E(M(µ, t)) ≤ (1− β)t−1
(

M(µ) + αβM(µ) − α
)
.

5 Proof of Theorems 3 and 4
Theorem 3 collaborates with conditions of ergodicity of our operator, which are differents
from that described in (r3). Theorems 3 and (r3) give us the following relations:

• If α ≤ β, then (r3) implies Theorem 3.

• If β < α, then Theorem 3 implies (r3).

Proof of Theorem 3. We get,

µFβAα(	) = µFβ(	)− αµFβ(⊕,	)
1− 2αµFβ(⊕,	) .

From consistency of the measure, µ(	) = µ(	,	) + µ(⊕,	). Thus, we conclude that
µ(	) ≥ µ(⊕,	). Consequently for all β ∈ (0, 1),

µFβ(⊕,	) ≤ µFβ(	) and 1− 2αµFβ(⊕,	) ≥ 1− 2αµFβ(	).

Therefore

µFβ(	)− αµFβ(⊕,	)
1− 2αµFβ(⊕,	) ≤ µFβ(	)− αµFβ(⊕,	)

1− 2αµFβ(	)

<
µFβ(	)

1− 2αµFβ(	)

= (1− β)µ(	)
1− 2α(1− β)µ(	) . (16)

Note that,

(1− β)µ(	)
1− 2α(1− β)µ(	) < µ(	) ⇔ (1− β)µ(	) < µ(	)− 2α(1− β)[µ(	)]2

⇔ µ(	)[2α(1− β)µ(	)− β] < 0. (17)

So (17) is true for 2α(1−β)µ(	)−β < 0. Thus, if µ(	) ∈ (0, β/2α(1− β)), then (16)
is less that µ(	). So,

µFβAα(	) < µ(	).
Now, we are able to conclude that µ(FβAα)t(	) is monotonously decreasing. Moreover

this sequence has a lower bound, then µ(FβAα)t(	)→ 0, when t→∞.

In [19] it was used two well known ideas: Peierls’ contour method and duality planar
graphs [4], which were used in the contact processes [5] and Stavskaya processes [18]. Here,
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the central idea is to count the probability to obtain a closed contour. At our contour
exist four types of steps, which we denoted by 1,2,3 and 4. Each contour is composed by
a quantity of horizontal steps,x, vertical steps, y; its last step is of the type k and has in
total z steps. Now, we associate a rate to each step and denote by Sk(x, y, z) the sum of
rates of all contours with these x, y, z and k.

After implemented the methodology, the following inequality was attained, which will
be our starting point.

µt(⊕) ≤
∞∑
x=1

∞∑
y=0

∞∑
z=1

x · [S3(x, y, z) + S4(x, y, z)]. (18)

The numbers Sk(x, y, z) satisfy the initial condition

Sk(x, y, 1) =
{

1 if x = 0, y = −1, and k = 1,
0 otherwise,

and also satisfy the transition equations
S1(x, y, z + 1) = S1(x, y + 1, z) + S2(x, y + 1, z) + S3(x, y + 1, z),
S2(x, y, z + 1) = 2β[S1(x− 1, y, z) + S2(x− 1, y, z) + S3(x− 1, y, z) + S4(x− 1, y, z)],
S3(x, y, z + 1) = α · [S2(x+ 1, y − 1, z) + S3(x+ 1, y − 1, z) + S4(x+ 1, y − 1, z)],
S4(x, y, z + 1) = (1− α) · [S2(x, y − 1, z) + S3(x, y − 1, z) + S4(x, y − 1, z)].

(19)
To estimate (18), let us use sums

Si(z) =
∞∑

x=−∞

∞∑
y=−∞

p−xq−ySi(x, y, z) with i ∈ {1, 2, 3, 4}, (20)

where p and q are positive parameters and p and q are such that x < p−x and 1 ≤ q−y.
Note that the right side of (18) has the following upper bound

∞∑
z=1

(S3(z) + S4(z)). (21)

As in [11, 20], (20) satisty the initial conditions

S1(1) = q, S2(1) = S3(1) = S4(1) = 0,

From (19) and (20) the recurrence conditions are:

S1(z + 1) = q(S1(z) + S2(z) + S3(z)),

S2(z + 1) = 2β
p

(S1(z) + S2(z) + S3(z) + S4(z)),

S3(z + 1) = pα

q
(S2(z) + S3(z) + S4(z)),

S4(z + 1) = 1− α
q

(S2(z) + S3(z) + S4(z)).

(22)

To write (22) in a matrix form, we introduce

S(z) = (S1(z), S2(z), S3(z), S4(z)).

11



Thus, the recurrence conditions are given by S(z+ 1) = S(z) ·M , i.e., S(z) = S(1) ·M z−1

where M is the matrix

M =


q 2β/p 0 0
q 2β/p pα/q (1− α)/q
q 2β/p pα/q (1− α)/q
0 2β/p pα/q (1− α)/q

 .

We define

N =


q 2β/p 0 0
q 2β/p pα/q (1− α)/q
q 2β/p pα/q (1− α)/q
q 2β/p pα/q (1− α)/q

 .
As M and N are non negatives and M ≤ N ,

S(z) ≤ S(1) ·N z−1. (23)

Note that N has four eigenvalues, where two among them are equal to zero. Moreover,
its eigenvectors are generate by (0, 1, 0,−1) and (0, 0, 1,−1). The eigenvalue of Perron-
Frobenius [15] is denoted by λPF . By end, we get λ2.

λPF = q + 2β/p+ (pα + 1− α)/q +
√

∆
2 and λ2 = q + 2β/p+ (pα + 1− α)/q −

√
∆

2 ,

where ∆ =
(
q + 2β

p
+ α(p− 1) + 1

q

)2

− 4(α(p− 1) + 1).

If λPF < 1, then β < 11α2/200(3−α). Moreover, fixed p, q and α, λPF is an increasing
function in relation to β. Therefore if we assume

β <
9α2

1000 , (24)

then λPF < 1. And this is the upper bound to β that we will adopt from now on.
The matrix N is diagonalizable, which allows us to write N z = Q−1DzQ (we are

calculating eigenvectors from the left) where Q = (qij)i,j=1,2,3,4 is the eigenvectors matrix
and Q−1 = (q̃ij)i,j=1,2,3,4 is your inverse. We have N z = (nzij)i,j=1,2,3,4 where

nz1j = λzPF q̃11q1j + λz2q̃12q2j, ∀ j = 1, 2, 3, 4, (25)

The eigenvectors associated with λPF and λ2 are,
(
λi − α(p−1)+1

q

)
q2

2αβ v3,

(
λi − α(p−1)+1

q

)
q

pα
v3, v3,

1− α
pα

v3

 for v3 ∈ R\{0} and i ∈ {PF, 2}.

(26)
We will take positive unitary representatives of the eigenvectors of λPF and λ2 by the

expression in (26). Due to our choise of eigenvectors,
4∑
j=1

q1j =
4∑
j=1

q2j = 1. We can verify

q̃11 = q22 + q23 + q24

ξ
and q̃12 = −q12 + q13 + q14

ξ
,

12



where ξ = q11(q22 + q23 + q24)− q21(q12 + q13 + q14) = q11 − q21.
Therefore,

q̃11 = 1− q21

q11 − q21
and q̃12 = q11 − 1

q11 − q21
. (27)

Thus, q̃11 + q̃12 = 1.
The eigenvectors associated with λPF and λ2 are unitaries. So,

v3 = 2αβ/q
(λi − (α(p− 1) + 1)/q))(q + 2β/p) + 2β/p(α(p− 1) + 1)/q) for i ∈ {PF, 2}.

Assuming (24) and using (23) and (25),

∞∑
z=1

(S3(z) + S4(z)) ≤ q

( ∞∑
z=0

(nz13 + nz14)
)

= q

( ∞∑
z=0

(λzPF q̃11q13 + λz2q̃12q23) +
∞∑
z=0

(λzPF q̃11q14 + λz2q̃12q24)
)

= q

(
q̃11(q13 + q14)

1− λPF
+ q̃12(q23 + q24)

1− λ2

)

= q

(
q̃11(q13 + q14)

1− λPF
+ (1− q̃11)(q23 + q24)

1− λ2

)
, (28)

where

q11 = qλPF − (α(p− 1) + 1)
λPF (q + 2β/p)− (α(p− 1) + 1) , q21 = qλ2 − (α(p− 1) + 1)

λ2(q + 2β/p)− (α(p− 1) + 1) ,

q13 = 2αβ/q
λPF (q + 2β/p)− (α(p− 1) + 1) , q23 = 2αβ/q

λ2(q + 2β/p)− (α(p− 1) + 1) ,

q14 = 2β(1− α)/pq
λPF (q + 2β/p)− (α(p− 1) + 1) , q24 = 2β(1− α)/pq

λ2(q + 2β/p)− (α(p− 1) + 1) .

We denote (28) by
LS(p, q, β, α). (29)

Proof of (A. 4). Let us consider p = 3/10, q = 1 − α/3 with α ∈ (0, 1). Thus, (29) is
an increasing function in relation to β, for β ∈ [0, 9α2/1000]. So, under these conditions,
if LS(3/10, 1− α/3, 9α2/1000, α) is less than 1, then LS(3/10, 1− α/3, β, α) is less than
1.

If β = 9α2/1000 then (29) is only function of α, which through some algebraic com-
putation is expressed by

LS(3/10, 1− α/3, 9α2/1000, α)

= −(36(−3 + α)α2(9α3 − 77α2 + 465α− 450))
(−9α3 + f(α)α + 77α2 − 3f(α)− 315α)(9α3 + f(α)α− 77α2 − 3f(α) + 315α) .

This expression is continuous and monotonic decreasing for α ∈ [0, 1]. Moreover, it
assumes value less than 1 for α = 0 and greater than zero for α = 1.
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Proof of (B. 4). Assuming R = {⊕} ⊂ AZ, i. e., R = {x ∈ AZ : xi0 = ⊕ for some i0 ∈
Z}. We denote δ = LS(p, q, β, α) and let us consider p = 3/10, q = 1 − α/3 and
β ∈ (0, 9α2/1000). Under these conditions and using the Theorem 4 item (A. 4),

µt(⊕) = δ	(FβAα)t(⊕) < LS(p, q, β, α) for all t.

From Toom et. al., (2011) the operator FβAα has an invariant measure ν, such that

ν(⊕) < LS(p, q, β, α) < 1.

For β < 9α2/1000 the operator FβAα has at least two distinct invariant measures,
namely the measure δ⊕ and the measure ν of the Theorem 4 item (B. 4).

6 Computational study
Computational simulations are widely used in the study of particles systems interacting[12,
1, 3, 17, 16, 13] and allows us to theorize what occurs in certain situations. Our process
may be defined on a finite space with periodic boundary conditions, Zn the set of re-
mainders modulo n, where n is an arbitrary natural number. Let us consider the set
of states Ωn = {	,⊕}Zn . We call elements of Ωn periodic configurations. The periodic
configurations are finite sequences of minuses and pluses, now we imagine these sequences
to have a periodic form.

Considering µ ∈ A	 to estimate E(τµ), we will perform a computational study. Let
us consider only δ-measures, whose x ∈ ∆, i.e., x has a finite number of minuses in an
ocean of pluses and M(δx) ∈ {10, 20, . . . , 100}. In this case, M(δx) indicates the number of
minuses on the configuration x. For the computational study, initially we take n = 1000.
We fix the parameters (α, β) ∈ {0.01, 0.02, . . . , 1}2 and perform our Monte Carlo study
for 100000 time steps or when all the components attain state plus. We call this exact
moment, stop time.

We performed our computational study within a cycle with a fixed pair (α, β): Af-
ter repeat the simulation 100 times, we will save 100 stop times which we denote by
t1, t2, t3, . . . , t100, the ti denotes the stop time on the i-th repetition. Using these informa-
tion we are able to evaluate

Ê(τµ) =

100∑
i=1

ti

100 ,

our estimator of E(τµ).
In Figure 2 we stated µ = δx whose Pop(x) ∈ {10, 100}. We present the values of

the upper bound of E(τµ) obtained from computer simulations and its upper bound from
the Theorem 1. The upper bound values of E(τµ), are represented by colors. In all the
figures, 2(a) - 2(d) for a fixed α and making β grow, the upper bound value decrease. In
2(a) and 2(b) we use Theorem 1 and in the Figures 2(c) and 2(d) we show our results
from computer studies. In each case, we describe the minimum and maximum mean time
observed. As expected, the minimum value is obtained on the region where α and β are
close to zero(dark red region) and the maximum value is obtained on the region where
β is close to one(light red region). Between these regions, which exhibits small and big
value of mean time of convergence, we get a intermediary ones represented by colors not

14



(a) Upper bounds of E(τµ) with Pop(x) = 10,
the minimum mean time equal to 10.0000 and
the maximum mean time equal to 296.4759.

(b) Upper bounds of E(τµ) with Pop(x) =
100, the minimum mean time equal to
100.0000 and the maximum mean time equal
to 570.3338.

(c) The computation estimation of E(τµ) with
Pop(x) = 10, the minimum mean time equal to
1.0101 and the maximum mean time equal to
285.6263.

(d) The computation estimation of E(τµ) with
Pop(x) = 100, the minimum mean time equal
to 1.0101 and the maximum mean time equal
to 519.0707.

Figure 2: Graphics from numerical studies of E(τµ).

red. This intermediary region is really sharp, when we see the results obtained through
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computer simulations.
Figure 3 shows the rigorous estimation in [19, 11, 20] (β < α2/250); the obtained by

us on the Theorem 4, (β < 9α2/1000) and the “curve” (well, it is not exactly a curve, it is
somewhat fuzzy) corresponding for the pars (α, β) from the computer simulations. One
can see with more details in [12] the procedure performed, by one of us, to simulate this
process. The procedure required some specific adjustment once that on average the finite
process, which we simulate, ” disappear ”. Heuristically speaking, the distance between
the numerical curve and the theoretical ones was expected. Since that the methodology
of contour applied to obtain the theoretical curve takes an upper bound for the number
contour.
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Figure 3: Here, we describe the curves in which β = α2/250 and β = 9α2/1000. Also,
we plot the datas obtained by computational simulation of the Flip-Annihilation process.
These data estimate the critical curve.
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