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Abstract

We study a class of one-dimensional probabilistic cellular automata, in which each
component can be in either state zero or one. The component interacts with two neighbors,
if its neighbors are in an equal state, then the component assumes the same state as its
neighbors. If its neighbors are in different states, the following can happen: a one on the
right side of a zero, in which case the component becomes one with probability 𝛼 or zero
with probability 1 − 𝛼; conversely, a zero on the right side of an one in which case, the
component becomes one with probability 𝛽 or zero with probability 1 − 𝛽. For a set of
initial distributions when both neighbors are placed on the right- side (respectively both on
the left- side) of a component, we prove that the process always converges weakly to the
measure concentrated on the configuration where all the components are zeros. When one
neighbor is placed on the left side and the other on the right side, the same convergence
happens when 𝛽 < 𝑓𝑁 (𝛼), where 𝑁 is the distance between the neighbors. However,
this convergence does not happen for 𝛽 > 1/2𝛼. Thus, in this case, we get the regimes
of ergodicity and non-ergodicity. Moreover, we exhibit another type of phase transition,
independent of neighbors’ locations. We also, present some numerical studies, in which we
use mean field approximation and Monte Carlo simulation.
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1 Statements
A class of one-dimensional probabilistic cellular automata, PCA by simplicity, is considered.

Cases in which a random process with local interaction exhibits some form of non-ergodicity
remain non-trivial and , as a result, continue to attract attention. As a result, ergodicity [8] and
the invariant measure [1] are of particular interest. Some research has been conducted on time
required to reach the equilibrium,i.e., the invariant probability measure, for PCA in finite or
infinite space [4, 6, 7, 10]. Generally, the studies about PCA consider its interaction with the
nearest neighbors. However, this assumption is not the only possible one. Here we present
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another approach. In part, that assumption is motivated by recent models in more recently
formulated theories in sciences like biology, economy and social science [2, 3, 5], establishing
the need for a non-nearest interaction among its components.

The study of PCA is linked with several research areas: statistical physics and theoretical
computer science, each with a different viewpoint [13]. This study presents various algorith-
mically unsolvable problems[14]; among them, we give attention to the undecidability of the
problem of ergodicity, i. e., there exists no algorithm, when taking in input the parameters
of a PCA if it is ergodic or not. When we face an undecidable problem, we work closely to
the boundaries of natural possibility. This encourages us to treat the partial results we have
obtained with more respect. A PCA is ergodic if its action on probability measures has a unique
invariant measure and for any initial distribution the process converges weakly for it. From the
initial studies of the Ising model, it became a tradition among physicists to discern a qualitative
difference between one-dimensional and multi-dimensional processes for all models with local
interaction. This is stated in the shape of the “positive rates conjecture”, which was refuted by
Peter Gács [15]. However, it remains nontrivial when a random process with one-dimensional
local interaction shows some form of non-ergodicity, and for this reason, it attracts attention [16].

We studied a PCA that is not restricted to the nearest-neighbor interaction, in which each
component can have two states (0 (zero) or 1 (one)), and they interact with two neighbors (not
necessarily the closest ones). Informally, when its neighbors are in the same state (both zero or
one ), the component assumes the neighbour’s state. If its neighbors are in the states 0 (zero) and
1 (one), the component will either become 1 (one) with probability 𝛼 or 0 (zero) with probability
1−𝛼. Now, its neighbors assume 1 (one) and 0 (zero), respectively, and the component becomes
1 (one) with probability 𝛽 or 0 with probability 1− 𝛽.

Given a set of possible initial measures for the process, we showed that the process converges
to the measure concentrated on the configuration where all the components are zero: (i) when
both of its neighbors are located on the left- side(respectively in its right- side) and (ii) when 𝛽 is
less than equal to a function of 𝛼 and 𝑁 . Also, there are two regions on the parameter space of
the process: one where the mean time of convergence is always infinite, and the other where it is
finite. Finally, we used mean-field approximation to study the process.

The random operators of interest are defined on the configuration space Ω = {0, 1}Z, where
Z is the set of integer numbers, and 0 and 1 are called one and zero, respectively. Each 𝑥 ∈ Ω,
called configuration, is a bi-infinite sequence of zeros and ones. A configuration 𝑥 ∈ Ω is
determined by its components 𝑥𝑖 for each 𝑖 ∈ Z and 𝑥𝑖 ∈ {0, 1}. The configuration 𝑥, whose
components are zeros or ones, is called all zeros and all ones. Two configurations 𝑥 and 𝑦 are
close to each other if the set {𝑖 ∈ Z : 𝑥𝑖 ̸= 𝑦𝑖} is finite. A configuration is called the island of
ones if it is close to all zeros, and we denote the set of islands of ones by Δ. If 𝑥 ∈ Δ and 𝑥 is
not all zeros, then there are positions 𝑖 < 𝑗 such that 𝑥𝑖+1 = 𝑥𝑗−1 = 1 and 𝑥𝑘 = 0 if 𝑘 ≤ 𝑖 or
𝑗 ≤ 𝑘. For this case, we define the length of the island 𝑥 by 𝑗 − 𝑖 − 1, and we denote this by
length(𝑥).

The normalized measures concentrated in the configurations all zeros and all ones are denoted
by 𝛿0 and 𝛿1, respectively. Also, given a configuration 𝑥, we denote the normalized measure
concentrated in 𝑥 by 𝛿𝑥. We define a cylinder in Ω in the usual way and we denote any thin
cylinder set

{𝑥 ∈ Ω : 𝑥𝑖 = 𝑎𝑖, for all 𝑖 ∈ 𝐼},

where (𝑎𝑖)𝑖∈𝐼 ∈ {0, 1} and 𝐼 is finite subset of Z. By simplicity, we denote thin cylinder by
{𝑥𝑖 = 𝑎𝑖, 𝑖 ∈ 𝐼}. We denote byℳ the set of normalized measures on the 𝜎-algebra generated
by cylinders in Ω. By convergence inℳ we mean convergence on all cylinders. We say that
𝜇 ∈ ℳ is uniform if it is invariant under space shifts, i.e., 𝜇(𝑥𝑖 = 𝑎) = 𝜇(𝑥𝑖+𝑗 = 𝑎) for any
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𝑗 ∈ Z. We denote by𝒜 the set of normalized measures in Δ. A measure belonging to𝒜 is called
an archipelago of ones. As Δ is countable any 𝜇 ∈ 𝒜 is a convex combination of 𝛿𝑥−measures
where 𝑥 ∈ Δ. So, 𝒜 ⊂ℳ.

Given an operator P, P : ℳ → ℳ, and an initial measure 𝜇 ∈ ℳ, the sequence 𝜇, 𝜇P,
𝜇P2, . . . define the random process. We say that a probability measure 𝜇 is invariant under P if
𝜇P = 𝜇. For each 𝑖 ∈ Z, we call 𝑉 (𝑖) ⊂ Z the set of neighbors of 𝑖. We define the translation
operator T𝑝 : Ω→ Ω as follows

(𝑥T𝑝)𝑘 = 𝑥𝑘−𝑝, for all 𝑘 ∈ Z,

which induces translation at measures. Throughout the text, we use the same notation, T𝑝 to
indicate translation in both cases: measures and configurations.

We will consider a class of probabilistic cellular automata in Z, where for each 𝑘 ∈ Z, 𝑉 (𝑘) =
{𝑘 + 𝑝, 𝑘 + 𝑞}. It is well-known[9, 12, 11] that the operator P is determined by the transition
probabilities 𝜃(𝑏𝑘|𝑎𝑉 (𝑘)) ∈ [0, 1], such that

𝜃(𝑏𝑘|𝑎𝑘+𝑝𝑎𝑘+𝑞) ∈ [0, 1] :
∑︁

𝑏𝑘∈{0,1}
𝜃(𝑏𝑘|𝑎𝑘+𝑝𝑎𝑘+𝑞) = 1.

Let 𝑥, 𝑦 ∈ Ω. A general operator P with 𝑉 (𝑘) = {𝑘 + 𝑝, 𝑘 + 𝑞} is defined

𝜇P(𝑦𝑖 = 𝑏𝑖, 𝑖 ∈ 𝐼) =
∑︁

𝑎𝑗 , 𝑗 ∈ 𝑉 (𝐼)
𝜇(𝑥𝑖 = 𝑎𝑖, 𝑖 ∈ 𝑉 (𝐼))

∏︁
𝑖∈𝐼

𝜃(𝑏𝑖|𝑎𝑖+𝑝𝑎𝑖+𝑞), (1)

where 𝑉 (𝐼) =
⋃︁
𝑖∈𝐼

𝑉 (𝑖). For fixed values of 𝑝 and 𝑞 we denote F(𝑝,𝑞) the operator whose transition

probabilities are

𝜃(1|ak+lak+r) =

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑘+𝑝 if 𝑎𝑘+𝑝 = 𝑎𝑘+𝑞;
𝛼 if 𝑎𝑘+𝑙 = 0 and ak+r = 1;
𝛽 if 𝑎𝑘+𝑙 = 1 and ak+r = 0.

(2)

Where 𝑙 = min{𝑝, 𝑞}, 𝑟 = max{𝑝, 𝑞} and 𝛼, 𝛽 belongs to [0, 1]. We do not consider 𝑁 = 0,
i.e., 𝑝 = 𝑞, once it is a simple case. For technical reasons: If 𝑝 and 𝑞 are non-positive, then we
assume that 𝑞 < 𝑝; and if 𝑝 or 𝑞 is positive, then 𝑝 < 𝑞. F(𝑝,𝑞) denotes by F when 𝑝 = 0 and
𝑞 = 1. Figure 1 depicts how the interaction occurs.

1

. . . xk+p xk+p+1 . . . xk . . . xk+q−1 xk+q . . .

. . . xk+p xk+p+1 . . . xk . . . xk+q−1 xk+q . . .

Figure 1: The non-nearest interaction of the process considering 𝑝 < 𝑞.

From now onwards throughout the text the measures 𝜇 will denote 𝜇 ∈ 𝒜. At the text 𝜇(1)
means the density of ones at 𝜇. Thus, 𝜇(1) = 0 for 𝜇 = 𝛿0 and 𝜇(1) > 0 for 𝜇 ̸= 𝛿0. The
measures 𝛿0 and 𝛿1 are invariant under F(𝑝,𝑞). Given 𝑝, 𝑞 and 𝜇 we define the random variable

𝜏 (𝑝,𝑞)
𝜇 = inf{𝑡 ≥ 0 : 𝜇F𝑡

(𝑝,𝑞)(1) = 0}. (3)
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The infimum of the empty set is ∞. When 𝑝 = 0 and 𝑞 = 1, we denote 𝜏 (𝑝,𝑞)
𝜇 by 𝜏𝜇. The

random variable in 𝜏 (𝑝,𝑞)
𝜇 indicates the time to attain 𝛿0 having F(𝑝,𝑞) started to measure 𝜇. Given

𝜇 there are islands of ones 𝑥𝑖 for 𝑖 ∈ N such that 𝜇 =
∑︁
𝑖∈N

𝑘𝑖𝛿𝑥𝑖 where 𝑘1 > 0, 𝑘2 > 0, . . . and

𝑘1 + 𝑘2 + . . . = 1. We denote the expected value by E .
Now we describe some trivial cases, in which we verify immediately: 𝛼 ∈ {0, 1} or

𝛽 ∈ {0, 1}. If 𝛼 = 𝛽 = 0, 𝛼 = 0 and 𝛽 ∈ (0, 1) or 𝛼 ∈ (0, 1) and 𝛽 = 0, then the process
converge to the measure 𝛿0. If 𝛼 = 𝛽 = 1, 𝛼 = 1 and 𝛽 ∈ [0, 1) or 𝛼 ∈ [0, 1) and 𝛽 = 1,
resulting in the density of ones at each time step is always positive. Therefore, these extreme
cases will not be considered.

Let us denote

𝑓𝑁(𝛼) = (1− 𝛼)𝑁 −𝑁 + 1− (1− 𝛼)𝑁

𝛼
,

where 𝑁 is the euclidian distance: precise |𝑝− 𝑞|.

Theorem 1. Given 𝜇 ∈ 𝒜, 0 < 𝛼 < 1 and 0 < 𝛽 < 1. If 𝑝, 𝑞 are non-negative values
(respectively non-positive values), then

lim
𝑡→∞

𝜇F 𝑡
(𝑝,𝑞) = 𝛿0.

Theorem 2. Given 𝜇 ∈ 𝒜, 0 < 𝛼 < 1 and 𝛽 < 𝑓𝑁(𝛼). If 𝑝 < 0 < 𝑞 , then

lim
𝑡→∞

𝜇F 𝑡
(𝑝,𝑞) = 𝛿0.

Theorem 3. Given 𝜇 ∈ 𝒜, 0 < 𝛼 < 1 and 𝛽 > 1/2𝛼. If 𝑝 < 0 < 𝑞 , then

lim
𝑡→∞

𝜇F 𝑡
(𝑝,𝑞) ̸= 𝛿0.

Theorem 1 shows the ergodicity of the process when the neighbors are on the same side
(left or right). In contrast, theorems 2 and 3 represent a phase transition between ergodicity and
non-ergodicity. Hence, the locality of the interaction can drastically change the dynamic of the
process.

Theorem 4. Given 𝜇 ∈ 𝒜, 𝛼, 𝛽 ∈ (0, 1).
(𝐴.4) If 𝛽 ≥ 𝑓1(𝛼), then E(𝜏 (𝑝,𝑞)

𝜇 ) =∞;
(𝐵.4) If 𝛽 < 𝑓𝑁(𝛼), then E(𝜏 (𝑝,𝑞)

𝜇 ) <∞.

In order to prove the item (𝐵.4), we need to use a significant quantity of technical tools; we
chose to put only its prove in section 4.

Theorem 4 gives us a kind of phase transition, independent of the locality of neighbors.

2 Order
Let us consider 0 < 1. We shall introduce a partial order on {0, 1}Z. Given two configurations

𝑥 and 𝑦, we say that 𝑥 precedes 𝑦, or what is the same, 𝑦 succeeds 𝑥 respectively when 𝑥 ≺ 𝑦 or
𝑦 ≻ 𝑥 for all 𝑖 ∈ Z.

We consider that a measurable set 𝑆 ⊂ {0, 1}Z is up-set if

∀𝑥, 𝑦 ∈ Ω, (𝑥 ∈ 𝑆 and 𝑥 ≺ 𝑦) =⇒ 𝑦 ∈ 𝑆.
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Notably, in every up-set 𝑆, the configuration all ones belong to 𝑆. So, the set 𝑆 = {1}Z is
up-set. Also, the set 𝑆 = ΩZ is up-set.

We introduced a partial order onℳ such that 𝜇 precedes 𝜈 as we denote 𝜇 ≺ 𝜈 (respectively,
𝜈 succeeds 𝜇 we denote 𝜈 ≻ 𝜇), if 𝜇(𝑆) ≤ 𝜈(𝑆) for any up-set 𝑆 (or 𝜇(𝑆) ≥ 𝜈(𝑆) for all lower
𝑆, complementary set of a up-set).

We call an operator P :ℳ→ℳ monotone if 𝜇 ≺ 𝜈 implies 𝜇P ≺ 𝜈P. Lemma 1 can be
found in [11, 12, 4].

Lemma 1. For all configurations 𝑥 and 𝑦, an operator P on {0, 1}Z with transition of probabili-
ties 𝜃(·|·) is monotone if and only if

𝑥 ≺ 𝑦 =⇒ 𝜃(1|xk+pxk+q) ≤ 𝜃(1|yk+pyk+q) (4)

Lemma 2. Given 𝑝 and 𝑞, the operator F(𝑝,𝑞) is monotone.

Proof. Using Lemma 1 and the definition of F(𝑝,𝑞) in (2).

�

3 Proof of Theorems 1, 2, and 4 items (A.4)
We consider that a configuration 𝑥 is a jump configuration if there is a position 𝑖 for

which 𝑥𝑗 = 1 for all 𝑗 < 𝑖 and 𝑥𝑗 = 0 for all 𝑗 ≥ 𝑖 by simplicity, we say the configuration is
(10, i)-jump and 𝒥 i

10 denotes jump and its concentrated measure. Analogously, we say that a
configuration 𝑥 is (01, i)-jump if there is position 𝑖 such that 𝑥𝑗 = 0 for all 𝑗 < 𝑖 and 𝑥𝑗 = 1
for all 𝑗 ≥ 𝑖. We denote the measure concentrated in (01, i)-jump by 𝒥 i

01. Figure 2 illustrates
(10,−1)-jump and (01,−1)-jump.

1

. . . 1 1 0 0 0 0 0 . . . (10,−1)- jump

. . . 0 0 1 0 1 1 0 . . . x

. . . 0 0 1 1 1 1 1 . . . (01,−1)- jump

x−3 x−2 x−1 x0 x1 x2 x3

. . .  −−−−− −−−−− −−−−− −−−−− −−−−− −−−−− . . .

Figure 2: We illustrate a (10,−1)-jump, a (01,−1)-jump, and a configuration 𝑥, which succeeds
(01,−1)-jump.

The pseudo-code, algorithm 1, shows the coupling between two stochastic processes gener-
ated by the operators F and F(𝑝,𝑞), with 𝑝, 𝑞 non-negative (analogously non-positive) and having
the same initial condition. The variables 𝑥(𝑗, 𝑡) and 𝑦(𝑗, 𝑡) are components of two marginal
densities at both position 𝑗 and time 𝑡, this type of coupling is extensively used in [9].
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Algorithm 1: COUPLING BETWEEN THE PROCESSES GENERATED BY F AND F(𝑝,𝑞)
WITH 𝑞 − 𝑝 > 0
1 Do 𝑐𝑜𝑛𝑡← 0 and 𝑞 − 𝑝 > 0
2 fixed 𝑖 ∈ Z
3 for each 𝑗 ∈ Z do

4 𝑥(𝑗, 0)←

⎧⎨⎩1 if 𝑗 ≤ 𝑖

0 if 𝑗 > 𝑖

5 𝑦(𝑗, 0)← 𝑥(𝑗, 0)
6 end
7 for 𝑡 ∈ N do
8 for 𝑗 ∈ Z do
9 𝑈 𝑡

𝑗 ∼ 𝒰[0,1]

10 end
11 for 𝑗 ∈ Z do

12 𝑥(𝑗, 𝑡)←

⎧⎪⎪⎨⎪⎪⎩
𝑥(𝑗, 𝑡− 1) if 𝑗 ̸= 𝑖

0 if 𝑗 = 𝑖 and 𝑈 𝑡
𝑗 > 𝛽

𝑥(𝑗, 𝑡− 1) if 𝑗 = 𝑖 and 𝑈 𝑡
𝑗 ≤ 𝛽

13 𝑦(𝑗, 𝑡)←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦(𝑗 + 𝑝, 𝑡− 1) if 𝑦(𝑗 + 𝑝, 𝑡− 1) = 𝑦(𝑗 + 𝑞, 𝑡− 1)
1 if 𝑦(𝑗 + 𝑝, 𝑡− 1) < 𝑦(𝑗 + 𝑞, 𝑡− 1) and 𝑈 𝑡

𝑗 < 𝛼

0 if 𝑦(𝑗 + 𝑝, 𝑡− 1) < 𝑦(𝑗 + 𝑞, 𝑡− 1) and 𝑈 𝑡
𝑗 > 𝛼

1 if 𝑦(𝑗 + 𝑝, 𝑡− 1) > 𝑦(𝑗 + 𝑞, 𝑡− 1) and 𝑈 𝑡
𝑗 < 𝛽

0 if 𝑦(𝑗 + 𝑝, 𝑡− 1) > 𝑦(𝑗 + 𝑞, 𝑡− 1) and 𝑈 𝑡
𝑗 > 𝛽

14 end
15 if 𝑥(𝑖, 𝑡) = 𝑦(𝑖, 𝑡) = 0 then 𝑐𝑜𝑛𝑡← 𝑐𝑜𝑛𝑡 + 1 and 𝑖→ 𝑖− 1
16 end

Lemma 3. For 𝑖 ∈ Z and 𝑝, 𝑞 non-negative,

𝒥 i
10F

t
(p,q)(1) ≤ 𝒥 i

10F
t(1).

Proof. In the pseudo-code, lines 4 − 5, we describe the initial condition 𝒥 i
10. Lines 12 − 13

describe the action of the operators F and F(𝑝,𝑞), respectively. Clearly, we see that P(𝑦(𝑗, 𝑡) ≤
𝑥(𝑗, 𝑡)) = 1 for each 𝑡 ∈ N.

�

Lemma 4. If 𝛽 ∈ (0, 1), then
lim
𝑡→∞
𝒥 i

10F
t(1) = 0.

Proof. At the pseudo-code, line 15, 𝑐𝑜𝑛𝑡 is the random variable where your value at the 𝑡-th
step is given by

∑︀𝑡
𝑘=1 𝐿1−𝛽

𝑘 , where 𝐿1−𝛽
1 , 𝐿1−𝛽

2 , . . . is a sequence of independent and identically
distributed random variables, whose P(𝐿1−𝛽

1 = 1) = 1 − 𝛽 and P(𝐿1−𝛽
1 = 0) = 𝛽. So, using

the strong law of Kolmogorov
∑︀𝑡

𝑘=1 𝐿1−𝛽
𝑘 /𝑡 converges almost surely to 1− 𝛽 when 𝑡 tends to

infinity.

�
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Proof of Theorem 1. First, we shall prove the theorem for 𝛿−measures. We consider
𝑞 − 𝑝 > 0. The case 𝑞 − 𝑝 < 0 is analogous. From Lemma 3

𝒥 i
10F

t
(p,q)(1) ≤ 𝒥 i

10F
t(1).

From Lemma 4, for a given 𝑖 ∈ Z,

lim
𝑡→∞
𝒥 i

10F
t(1) = 0 =⇒ lim

𝑡→∞
𝒥 i

10F
t
(p,q)(1) = 0.

Note that given 𝛿𝑥, there is 𝑖 ∈ Z such that 𝛿𝑥 ≺ 𝒥 i
10. So, by monotonicity of operator F(𝑝,𝑞),

lim
𝑡→∞

𝛿𝑥Ft
(p,q)(1) = 0.

Now, we prove for any archipelago 𝜇. The measure 𝜇 can be written as a convex combination of
𝛿𝑥1 , 𝛿𝑥2 , . . ., where 𝑥1, 𝑥2. . . . belongs to Δ. As proved previously, for a fixed 𝑖 ∈ N

lim
𝑡→∞

𝛿𝑥𝑖F𝑡
(𝑝,𝑞) = 𝛿0.

The F(𝑝,𝑞) is linear, so 𝜇F(𝑝,𝑞) is a convex combination of 𝛿𝑥1F(𝑝,𝑞), 𝛿𝑥2F(𝑝,𝑞), . . .. Thus, we
get that lim

𝑡→∞
𝜇F𝑡

(𝑝,𝑞) = 𝛿0.

�

Note that

lim
𝑡→∞
𝒥01F𝑡

(𝑝,𝑞) =

⎧⎨⎩𝛿0, if 𝑝 and 𝑞 are both non-positive;
𝛿1, if 𝑝 and 𝑞 are both positive.

It shows that neighbors’ position on the interaction effects on system behavior.
Proof of Theorem 2. It is a direct consequence of item (B.4) of Theorem 4.
If length(𝑥) = 1, then 𝛿𝑥F𝑡

(𝑝,𝑞)(1) is the distribution of 𝑋𝑡, where (𝑋𝑡)𝑡∈N is a birth and
death process whose 𝑋0 = 1.

More specifically,

P(𝑋𝑡 = 𝑎 + 1|𝑋𝑡−1 = 𝑎) = 𝜃(1|01)𝜃(1|10);
P(𝑋𝑡 = 𝑎− 1|𝑋𝑡−1 = 𝑎) = 𝜃(0|01)𝜃(0|10); (5)

P(𝑋𝑡 = 𝑎|𝑋𝑡−1 = 𝑎) = 𝜃(1|01)𝜃(0|10) + 𝜃(0|01)𝜃(1|10).

Where 𝑎 ∈ N.
We denote by ℎ𝑖, the absorption probability of the process 𝑋 hits the state zero considering

that we started at state 𝑖 and the hitting time of state zero given that we started at state 𝑖 by

𝐻𝑖 = 𝑖𝑛𝑓{𝑡 ≥ 0 : 𝑋𝑡 = 0 and 𝑋0 = 𝑖}.

At our case, if 𝛽 < 𝑓1(𝛼), then ℎ𝑖 = 1 and if 𝛽 ≥ 𝑓1(𝛼), then ℎ𝑖 < 1. Thus E(𝐻𝑖) =∞, for all
𝑖 ≥ 1

Lemma 5. Given 𝑥 ∈ Δ such that 𝑥 = 𝑥. If 𝛽 > 𝑓1(𝛼), then E(𝜏 (𝑝,𝑞)
𝑥 ) =∞.
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Proof. Let us consider the birth and death process, (𝑋𝑡)𝑡∈N where 𝑋0 = 1 and 𝑋𝑡 has distribution
𝛿𝑥F𝑡

(𝑝,𝑞) considering length(𝑥) = 1. So,

E
(︁
𝜏 (𝑝,𝑞)

𝑥

)︁
= E(𝐻𝑋

1 ).

Using the previous observations we get E
(︁
𝜏 (𝑝,𝑞)

𝑥

)︁
=∞.

�

For any 𝜇 =
∞∑︁

𝑖=1
𝑘𝑖𝛿𝑥𝑖 , we define 𝜇 as follows: 𝜇 = ∑︀∞

𝑖=1 𝑘𝑖𝛿𝑥𝑖 . Thus, 𝜇 ∈ 𝒜 and 𝜇 ≺ 𝜇.

Proof of item (𝐴.4) of Theorem 4. Since F(𝑝,𝑞) is monotone, we only need to prove that
E

(︁
𝜏 (𝑝,𝑞)

𝜇

)︁
=∞.

Using the definition of 𝜏 (𝑝,𝑞)
𝜇 , we get

𝜏 (𝑝,𝑞)
𝜇 = inf{𝑡 ≥ 0 : 𝛿𝑥1F𝑡

(𝑝,𝑞)(1) = 𝛿𝑥2F𝑡
(𝑝,𝑞)(1) = . . . = 0} = inf{𝑡 ≥ 0 : 𝛿𝑥1F𝑡

(𝑝,𝑞)(1) = 0} = 𝜏
(𝑝,𝑞)
𝑥1 .

Using Lemma 5 we have, E
(︁
𝜏

(𝑝,𝑞)
𝑥1

)︁
= E(𝐻𝑋

1 ) =∞. Thus, E
(︁
𝜏 (𝑝,𝑞)

𝜇

)︁
=∞.

�

4 Proof of item (𝐵.4) of Theorem 4
Now, let us consider two sequences of independent random variables, (𝐿𝑡)𝑡∈N and (𝑅𝑡)𝑡∈N,

where for all 𝑡 ∈ N,

• The random variable 𝐿𝑡 has the following distribution P(𝐿𝑡 = 0) = (1 − 𝛼)𝑁 and
P(𝐿𝑡 = 𝑘) = 𝛼(1− 𝛼)𝑁−𝑘, ∀𝑘 ∈ {−𝑁, . . . ,−1};

• 𝑅𝑡 has the following distribution P(𝑅𝑡 = 0) = 𝛽 and P(𝑅𝑡 = −1) = 1− 𝛽.

The process 𝑊 𝑁 is a Markov chain on Z, with the following transition diagram (see Figure
3) 1

. . . i−1 i i+1 i+2 i+3 . . . i+N . . .

Figure 3: Transition of process 𝑊 𝑁 .

The 𝑊 𝑁 = (𝑊 𝑁
𝑡 )𝑡∈N is given by

𝑊 𝑁
𝑡 = 𝑊 𝑁

0 +
𝑡∑︁

𝑘=1
(𝑅𝑘 − 𝐿𝑘)

where (𝑅𝑡 − 𝐿𝑡)𝑡∈N is a sequence of independent and identically distributed random variables.
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For each 𝑖 ∈ Z

P(𝑊 𝑁
𝑡 = 𝑖 + 𝑁 |𝑊 𝑁

𝑡−1 = 𝑖) = P(𝑅𝑡 = 0)P(−𝐿𝑡 = 𝑁)
P(𝑊 𝑁

𝑡 = 𝑖− 1|𝑊 𝑁
𝑡−1 = 𝑖) = P(𝑅𝑡 = −1)P(−𝐿𝑡 = 0)

P(𝑊 𝑁
𝑡 = 𝑖|𝑊 𝑁

𝑡−1 = 𝑖) = P(𝑅𝑡 = 0)P(−𝐿𝑡 = 0) + P(𝑅𝑡 = −1)P(−𝐿𝑡 = 1).

When 𝑘 ∈ {1, . . . , 𝑁 − 1}

P(𝑊 𝑁
𝑡 = 𝑖 + 𝑘|𝑊 𝑁

𝑡−1 = 𝑖) = P(𝑅𝑡 = 0)P(−𝐿𝑡 = 𝑘) + P(𝑅𝑡 = −1)P(−𝐿𝑡 = 𝑘 + 1).

Thus, its transition probabilities from state 𝑖 to state 𝑗, 𝑝𝑖𝑗 is given by

𝑝𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛽𝛼(1− 𝛼)𝑁−𝑘 + (1− 𝛽)𝛼(1− 𝛼)𝑁−(𝑘+1) for 𝑗 ∈ {𝑖 + 1, 𝑖 + 2, . . . , 𝑖 + 𝑁 − 1}
and 𝑘 = 𝑗 − 𝑖;

𝛽(1− 𝛼)𝑁 + (1− 𝛽)𝛼(1− 𝛼)𝑁−1 for 𝑗 = 𝑖

(1− 𝛽)(1− 𝛼)𝑁 , for 𝑗 = 𝑖− 1;
𝛽𝛼, for 𝑗 = 𝑖 + 𝑁 ;
0, at all the other cases.

(6)
We get,

E(𝑅𝑡) = 𝛽 − 1 and E(𝐿𝑡) = 1− (1− 𝛼)𝑁

𝛼
− 1−𝑁 + (1− 𝛼)𝑁 .

Moreover, through the law of large numbers

𝑊 𝑁
𝑡 → −∞ with probability 1 when 𝛽 < 𝑓𝑁(𝛼). (7)

Given the processes 𝑊 𝑁 , we denote for 𝑖 > 0

𝐻𝑊 𝑁

𝑖 = inf{𝑡 ≥ 0 : 𝑊 𝑁
𝑡 = 0 and 𝑊 𝑁

0 = 𝑖}.

From (7), we get that E(𝐻𝑊 𝑁

𝑖 ) is finite when 𝛽 < 𝑓𝑁(𝛼).

4.1 The operator E𝑁

Let us define the extension operator, E𝑁 : 𝒜 → 𝒜, which act in the following way.
First, we will define its action on 𝛿-measures, 𝛿𝑥, whose 𝑥 ∈ Δ and length(𝑥) > 1. Clearly,

there are positions 𝑖0 < 𝑗0 such that 𝑥𝑖0 = 𝑥𝑗0 = 1 and 𝑥𝑘 = 0 for 𝑘 < 𝑖0 or 𝑘 > 𝑗0.
After applying E𝑁 , each one among the components; 𝑥𝑖0−𝑁 , 𝑥𝑖0−𝑁+1, . . . , 𝑥𝑖0−1; will be

independent from each other: become 1 (one) with probability 𝛼 or stay 0 (zero) with probability
1−𝛼. On the other side, the component 𝑥𝑗0−1 and 𝑥𝑗0 becomes 1 (one) and 0 (zero), respectively
with probability (1− 𝛽) or 𝑥𝑗0−1 and 𝑥𝑗0 staying the same with probability 𝛽. Thus, we will get
positions 𝑖1 < 𝑗1. Continuing with this argumentation, after applying E𝑁 during 𝑡 consecutive
times, E𝑡

𝑁 , we will get positions 𝑖𝑡 and 𝑗𝑡. The measures 𝛿𝑥 when length(𝑥) ∈ {0, 1} are
invariant distributions to E𝑁 .

The E𝑁 is a linear operator. Therefore, for 𝜇 ∈ 𝒜 we get
∑︁

𝑥𝑖∈Δ
𝑘𝑖(𝛿𝑥𝑖E𝑁) = 𝜇E𝑁 .
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For 𝑥 ∈ Δ where length(𝑥) = 𝑊 𝑁
0 + 1, the length of the island on time 𝑡, 𝛿𝑥E𝑡

𝑁 , decreases
by one is given by the Markov chain 𝑊 𝑁

𝑡 . Therefore, if 𝑊 𝑁 is negative with probability one
when 𝑡 goes to infinity, 𝛿𝑥E𝑡

𝑁 → 𝛿0 when 𝑡→∞. In addition, the length of islands at 𝛿𝑥E𝑡
𝑁 is

bigger than the length of islands at 𝛿𝑥F𝑡
(0,𝑁). This relation among 𝑊 𝑁 , E𝑁 and F(0,𝑁) will be

usefull to prove the (B.4).

Lemma 6. Given 𝑥 ∈ Δ and 𝛿𝑥 its concentrated measure

𝛿𝑥E𝑁(1) ≥ 𝛿𝑥F(0,𝑁)(1).

Proof. Direct from E𝑁 definition.

�

Lemma 7. Given 𝜇, if
lim
𝑡→∞

𝜇E 𝑡
𝑁 = 𝛿0, then lim

𝑡→∞
𝜇F 𝑡

(0,𝑁) = 𝛿0.

Prova. Using the Lemma 6

𝜇E𝑡
𝑁(1) =

∑︁
𝑥𝑖∈Δ

𝑘𝑖(𝛿𝑥𝑖E𝑡
𝑁)(1) ≥

∑︁
𝑥𝑖∈Δ

𝑘𝑖(𝛿𝑥𝑖F𝑡
(0,𝑁))(1) = 𝜇F𝑡

(0,𝑁)(1).

�

Now, let us describe a relation between E𝑁 and 𝑊 𝑁 . The action of E𝑁 on the left-side of 𝑖0
to obtain a new position 𝑖1 is described by random variable 𝐿1, once

P(𝑖1 = 𝑖0) = P(𝑥𝑖0−𝑁 = . . . = 𝑥𝑖0−1 = 0 and 𝑥𝑖0 = 1) = (1− 𝛼)𝑁 = P(𝐿1 = 0).
P(𝑖1 = 𝑖0 − 1) = P(𝑥𝑖0−𝑁 = . . . = 𝑥𝑖0−2 = 0 and 𝑥𝑖0−1 = 1) = (1− 𝛼)𝑁−1𝛼 = P(𝐿1 = 1).

Therefore, for 𝑘 ∈ {1, . . . , 𝑁}

P(𝑖1 = 𝑖0 − 𝑘) = P(𝑥𝑖0−𝑁 , . . . , 𝑥𝑖0−(𝑘−1) stay zero and 𝑥𝑘 become one)
= (1− 𝛼)𝑁−𝑘𝛼

= P(𝐿1 = 𝑘).

In a general way, for E𝑡
𝑁

P(𝑖𝑡 = 𝑖𝑡−1 − 𝑘) = P(𝐿𝑡 = 𝑘).
On the other side,

P(𝑗𝑡 = 𝑗𝑡−1) = P(𝑥𝑗𝑡 and 𝑥𝑗𝑡−1 stay the same) = P(𝑥𝑗𝑡 stay 1) = 𝛽,

and
P(𝑗𝑡 = 𝑗𝑡−1 − 1) = P(𝑥𝑗𝑡−1−1 = 1 and 𝑥𝑗𝑡−1 = 0) = (1− 𝛽).

So,
P(𝑗𝑡 = 𝑗𝑡−1) = P(𝑅𝑡 = 0) and P(𝑗𝑡 = 𝑗𝑡−1 − 1) = P(𝑅𝑡 = −1).

Lets 𝑥 ∈ Δ, its respective 𝛿−measure 𝛿𝑥 and 𝑊 𝑁
0 = length(𝑥)− 1. Let us see the evolution

of 𝛿𝑥E𝑁 . The 𝑊 𝑁
1 indicates the length, minus one, of that island after E𝑁 action. So, 𝑊 𝑁

𝑡

indicates the length, minus one, of that island after 𝑡 applications of E𝑁 . If (𝛿𝑥E𝑡−1
𝑁 )E𝑁 = 𝛿𝑥E𝑡−1

𝑁

then the respective island has length one. In this case, following the relation established between
𝑊 𝑁 and E𝑁 , we have 𝑊 𝑁

𝑡 = 0.
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4.2 Another representation of F(𝑝,𝑞)

We can write the operator F(𝑝,𝑞) in another way. In Figure 4 we have the action of operator
F(𝑝,𝑞) on the left side for given values of 𝑝 and 𝑞. On the right- side, we have the action of the
function T𝑝 composed with F(0,𝑞−𝑝), which is given by

1

. . . x−1 x0 x1 x2 x3 x4 . . .

. . . y−1 y0 y1 y2 y3 y4 . . .

F(1, 3)

. . . x−1 x0 x1 x2 x3 x4 . . .

. . . x′−1 x′0 x′1 x′2 x′3 x′4 . . .

. . . y−1 y0 y1 y2 y3 y4 . . .

F(0, 2)T1

. . . x−3 x−2 x−1 x0 x1 x2 . . .

. . . y−3 y−2 y−1 y0 y1 y2 . . .

F(−1,−3)

. . . x−3 x−2 x−1 x0 x1 x2 . . .

. . . x′−3 x′−2 x′−1 x′0 x′1 x′2 . . .

. . . y−3 y−2 y−1 y0 y1 y2 . . .

F(0,−2)T−1

. . . x−3 x−2 x−1 x0 x1 x2 . . .

. . . y−3 y−2 y−1 y0 y1 y2 . . .

F(−1, 1)

. . . x−3 x−2 x−1 x0 x1 x2 . . .

. . . x′−3 x′−2 x′−1 x′0 x′1 x′2 . . .

. . . y−3 y−2 y−1 y0 y1 y2 . . .

F(0, 2)T−1

Figure 4: On the left side, we schematized the interaction of the operators F(1,3), F(−1,−3), and
F(−1,1). The corresponding descriptions are placed on the right side through the composition
with a translation operator. The time is running from the south to the north.

F(𝑝,𝑞) = F(0,𝑞−𝑝)T𝑝. (8)

Lemma 8. Let 𝑥 ∈ Δ, for each 𝑡 ∈ N

𝛿𝑥F𝑡
(𝑝,𝑞)(1) = 𝛿𝑥F𝑡

(0,𝑞−𝑝)(1).

Proof. Through (8), we have
𝛿𝑥F(𝑝,𝑞) = 𝛿𝑥

(︁
F(0,𝑞−𝑝)T𝑝

)︁
.
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Clearly T𝑝 keeps the density of ones. So,

𝛿𝑥

(︁
F(0,𝑞−𝑝)T𝑝

)︁
(1) = 𝛿𝑥F(0,𝑞−𝑝)(1) =⇒ 𝛿𝑥F(𝑝,𝑞)(1) = 𝛿𝑥F(0,𝑞−𝑝)(1).

�

Lemma 9. Given 𝑥 ∈ Δ and 𝛿𝑥 its concentrated measure. If 𝛽 < 𝑓𝑁(𝛼) and 𝑞 − 𝑝 = 𝑁 , then
E(𝜏 (𝑝,𝑞)

𝑥 ) is finite.

Proof. Using (8)
𝛿𝑥F(𝑝,𝑞) = 𝛿𝑥(F(0,𝑞−𝑝)T𝑝).

So,

𝛿𝑥F(𝑝,𝑞)(1) = 𝛿𝑥(F(0,𝑞−𝑝)T𝑝)(1).

From the lemmas 6 and 7

𝛿𝑥E𝑁(1) ≥ 𝛿𝑥F(0,𝑁)(1); (9)

and using
𝜏E𝑁

𝑥 = inf{𝑡 ≥ 0 : 𝛿𝑥E𝑡
𝑁 = 𝛿𝑦 and length(𝑦) = 1}

we get from (9) that

E(𝜏E𝑁
𝑥 ) ≥ E(𝜏 (0,𝑁)

𝑥 ) = E(𝜏 (𝑝,𝑞)
𝑥 ).

Initially, we shall prove that E(𝜏E𝑁
𝑥 ) is finite. Now, we used the relationship between

E𝑁 and 𝑊 𝑁 . As 𝛽 < 𝑓𝑁(𝛼) we have 𝑊 𝑁
𝑡 equal to zero with probability one. Moreover,

E(𝜏E𝑁
𝑥 ) = E(𝐻𝑊 𝑁

length(𝑥)), which is finite.
As a result, the length of the island is currently equal to one, with probability one. Then,

using the relation between F(0,𝑁) acting on the island whose length is one with 𝑊 1, we can
conclude: if 𝛽 < 𝑓𝑁(𝛼) then E(𝜏 (0,𝑁)

𝑥 ) is finite.

�

Proof of item (𝐵.4) of Theorem 4.
Lets 𝑁 = 𝑞 − 𝑝, 𝑦 ∈ {𝑥1, 𝑥2, . . .} and length(𝑦) = max{length(𝑥𝑖); 𝑖 = 1, 2, . . .}. Using

(8)

𝜏𝜇 = inf{𝑡 ≥ 0 : 𝛿𝑥1F𝑡
(𝑝,𝑞)(1) = 𝛿𝑥2F𝑡

(𝑝,𝑞)(1) = . . . = 0}
= inf{𝑡 ≥ 0 : 𝛿𝑥1F𝑡

(0,𝑁)(1) = 𝛿𝑥2F𝑡
(0,𝑁)(1) = . . . = 0}

= 𝜏𝑦,

By the Lemma 9, E(𝜏𝑦) is finite. So, E(𝜏𝜇) is finite.

�
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5 Proof of Theorem 3
To prove Theorem 3, we shall use coupling[13, 11, 9] between the length o the island on

time 𝑡, 𝛿𝑥F(𝑝,𝑞)𝑡 and the birth and death process 𝑋 .
Let us take 𝑝 < 0 < 𝑞 and 𝑥 ∈ Δ with length(𝑥) = 1. In this case, the quantity of ones

on the system is described by a birth-death process with the absorbing state, zero. Moreover,
the distance between two consecutive ones is always the same, more precisely it is 𝑁 = 𝑞 − 𝑝.
Given a natural value 𝑡, if 𝛿𝑥F𝑡

(𝑝,𝑞) ̸= 𝛿0, then we shall get random positions (𝑖𝑡, 𝑗𝑡), where with
probability one 𝑖𝑡 < 𝑗𝑡, 𝑥𝑘 = 0 for all 𝑘 ≤ 𝑖𝑡 or 𝑘 ≥ 𝑗𝑡 and 𝑥𝑖𝑡+1 = 𝑥𝑗𝑡−1 = 1. If 𝛿𝑥F𝑡

(𝑝,𝑞) = 𝛿0,
then there was moment 𝑡 for which 𝑗𝑡−1 = 𝑖𝑡−1 + 2 and 𝑗𝑡 < 𝑖𝑡.

The random variables 𝑖𝑡 and 𝑗𝑡 are related to the transition probabilities of the operator F(𝑝,𝑞).
It is defined by:

P(𝑖𝑡 = 𝑖𝑡−1 − 𝑞, 𝑗𝑡 = 𝑗𝑡−1 + 𝑝) =

⎧⎨⎩0, if 𝑗𝑡 < 𝑖𝑡;
𝜃(1|01)𝜃(0|10), other cases.

P(𝑖𝑡 = 𝑖𝑡−1 + 𝑞, 𝑗𝑡 = 𝑗𝑡−1 − 𝑝) =

⎧⎨⎩0, if 𝑗𝑡 < 𝑖𝑡;
𝜃(0|01)𝜃(1|10), other cases.

P(𝑖𝑡 = 𝑖𝑡−1 − 𝑞, 𝑗𝑡 = 𝑗𝑡−1 − 𝑝) =

⎧⎨⎩0, if 𝑗𝑡 < 𝑖𝑡;
𝜃(1|01)𝜃(1|10), other cases.

P(𝑖𝑡 = 𝑖𝑡−1 + 𝑞, 𝑗𝑡 = 𝑗𝑡−1 + 𝑝) =

⎧⎨⎩0, if 𝑗𝑡 < 𝑖𝑡;
𝜃(0|01)𝜃(0|10), other cases.

where 𝜃(.|.) is on (2). Figure 5 illustrates the possible transitions of the process 𝛿𝑥F(−1,1), where
the initial measure is concentrated in an island whose length is one. In this case, we get 𝑖0 = −1
and 𝑗0 = 1. On the right side is presented the following possible transitions, values of 𝑖1, 𝑗1:

• Become (a), 𝑖1 = −2, 𝑗1 = 0. It happens with probability 𝜃(1|01)𝜃(0|10);

• Become (b) 𝑖1 = 0, 𝑗1 = 2. It happens with probability 𝜃(0|01)𝜃(1|10);

• Become (c) 𝑖1 = −2, 𝑗1 = 2. It happens with probability 𝜃(1|01)𝜃(1|10);

• Become (d) 𝑖1 = 1, 𝑗1 = −1. It happens with probability 𝜃(0|01)𝜃(0|10).

Lemma 10. Given 𝑝 < 0 < 𝑞, 0 < 𝛼 < 1 and 𝛽 > 1/2𝛼. If length(𝑥) = 1, then

lim
𝑡→∞

𝛿𝑥𝐹 𝑡
(𝑝,𝑞) ̸= 𝛿0.

Proof. We will prove the following equivalent proposition: Given 0 < 𝛼 < 1 and 𝛽 ≥ 1/2𝛼.
If length(𝑥) = 1, then the probability of 𝑖𝑡 → −∞ and 𝑗𝑡 →∞ when 𝑡→∞ is positive.

We define a birth-death process with absorbing state zero, 𝑋 = (𝑋𝑡)𝑡>0, where for 𝑎 > 0,

P(𝑋𝑡+1 = 𝑎 + 1|𝑋𝑡 = 𝑎) = 𝜃(1|01)𝜃(1|10)
P(𝑋𝑡+1 = 𝑎− 1|𝑋𝑡 = 𝑎) = 𝜃(0|01)𝜃(0|10) + 𝜃(1|01)𝜃(0|10) + 𝜃(0|01)𝜃(1|10).

The process 𝑋 decrease, i.e., P(𝑋𝑡+1 < 𝑋𝑡) = 1 for the random positions (𝑖𝑡, 𝑗𝑡): both drift to
the left or both drift to the right, or the 𝑖𝑡 drifts to the right and 𝑗𝑡 drift to the left, i.e., the (a) or
(b) or (d) happens. And the process 𝑋 increase, i.e., P(𝑋𝑡+1 > 𝑋𝑡) = 1 when the 𝑖𝑡 drift to the
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1

. . . 0 0 1 0 0 . . .

. . .      . . .
xi−1 xi xi+1 xi+2 xi+3

. . . 0 1 0 0 0 . . .

. . .      . . .
xi−1 xi xi+1 xi+2 xi+3

(a)

. . . 0 0 0 1 0 . . .

. . .      . . .
xi−1 xi xi+1 xi+2 xi+3

(b)

. . . 0 1 0 1 0 . . .

. . .      . . .
xi−1 xi xi+1 xi+2 xi+3

(c)

. . . 0 0 0 0 0 . . .

. . .      . . .
xi−1 xi xi+1 xi+2 xi+3

(d)

Figure 5: Possible transitions of the 𝛿𝑥F(−1,1), whose length(𝑥) = 1.

left and 𝑗𝑡 drift to the right, i.e., (c) happens. Since 𝑋 is a birth and death process, sufficient
conditions to be absorbed with a probability of less than one are known[17]. Using the relation
between the process 𝑋 and 𝛿𝑥F𝑡

(𝑝,𝑞) where length(𝑥) is finite this sufficient condition happens if
only if

𝜃(1|01)𝜃(1|10) > 𝜃(0|01)𝜃(0|10) + 𝜃(1|01)𝜃(0|10) + 𝜃(0|01)𝜃(1|10).
Using (2) it means 𝛽 > 1/2𝛼. Therefore, the quantity of times that (c) happens is bigger than the
other ones with positive probability.

�

Proof of Theorem 3. Let us consider 𝜇 and 𝜇 a convex combination of 𝛿𝑥1 , 𝛿𝑥2 , . . . and
𝛿𝑥1 , 𝛿𝑥2 , . . . respectively. As we know, each 𝛿𝑥𝑖

≺ 𝛿𝑥𝑖
where length(𝑥𝑖) = 1. By the Lemma 2

𝛿𝑥𝑖
𝐹 𝑡

(𝑝,𝑞) ≺ 𝛿𝑥𝑖
𝐹 𝑡

(𝑝,𝑞)

and trough the Lemma 10

lim
𝑡→∞

𝛿𝑥𝑖
𝐹 𝑡

(𝑝,𝑞)(1) > 0⇒ lim
𝑡→∞

𝜇𝐹 𝑡
(𝑝,𝑞)(1) > 0⇒ lim

𝑡→∞
𝜇𝐹 𝑡

(𝑝,𝑞)(1) > 0.

�

6 Numerical study
Some research areas have received more attention since building the first digital computer

programmable. It is due to the possibility of performing a numerical simulation of some processes,
previously developed by hand. A classic example of this is historic. Turing simulation(Turing
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1952) studied a reaction-diffusion morphogen system[18]. Nowadays, the use of computers in
the study of mathematical/physical models is widely used. Even to assist on the directions we
should take on the theoretical studies. In this spirit, numerical methods are used in PCA studies,
which are fruitful.

We will use mean-field approximation [4], MFA for simplicity. The MFA gives us a deter-
ministic representation of the evolution of densities of zeros and ones. Usually, writing and
analyzing the MFA is a first step in guessing the behavior of the system.

Let us take(𝑌𝑖)𝑖∈Z and (𝑍𝑖)𝑖∈Z two sequences of independent random variables. Moreover,
for 𝑖 ∈ Z

P(𝑌𝑖 = 1) = 𝛼 and P(𝑌𝑖 = 0) = 1− 𝛼; P(𝑍𝑖 = 1) = 𝛽 and P(𝑍𝑖 = 0) = 1− 𝛽.

Let 𝑥𝑡
𝑖 be the random variable that describes the state of the configuration 𝑥 on the position 𝑖

at time 𝑡. So, using the probability transition of F(𝑝,𝑞) (see (2)) and that (𝑥𝑡
𝑖)2 = 𝑥𝑡

𝑖,

𝑥𝑡
𝑖 = (𝑥𝑡

𝑖+𝑙𝑥
𝑡
𝑖+𝑟)(1− 𝑌𝑖 − 𝑍𝑖) + 𝑥𝑡

𝑖+𝑙𝑍𝑖 + 𝑥𝑡
𝑖+𝑟𝑌𝑖 (10)

Let us assume the initial measure, 𝜇, uniform and define 𝜌𝑡
𝑖 = E𝜇(𝑥𝑡

𝑖). Since 𝜇 does not
depend on 𝑖, we assume 𝜌𝑡 = 𝜌𝑡

𝑖. Taking expectation of both sides of (10) and assuming 𝑥𝑡
𝑖 and

𝑥𝑡
𝑗 independents each other. We obtain the following difference equation

𝜌𝑡+1 = 𝜌𝑡(𝛼 + 𝛽) + (1− 𝛼− 𝛽)(𝜌𝑡)2 where (𝛼, 𝛽) ∈ (0, 1)2. (11)

When we take 𝜌𝑡+1 = 𝜌𝑡 in (11), we have a second degree equation to 𝜌𝑡. Moreover, their
roots are zero and one, which agree with the actual process.

It is easy to conclude for 𝜌0 ∈ (0, 1) the dichotomy to the sequence 𝜌0, 𝜌1, 𝜌2, . . ..

• 𝜌𝑡+1 > 𝜌𝑡 if and only if 𝛽 > 𝑓1(𝛼),

• 𝜌𝑡+1 < 𝜌𝑡 if and only if 𝛽 < 𝑓1(𝛼).

In both cases, 𝜌0, 𝜌1, 𝜌2, . . . is a monotone sequence. Moreover, on the increasing case one
is its upper limit. So, 𝜌𝑡 goes to 1 when 𝑡 tends to infinity. By similar argumentation, on the
decreasing case 𝜌𝑡 goes to 0 when 𝑡 tends to infinity.
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Figure 6: Here, we illustrate the items (𝐴.4) and (𝐵.4) from Theorem 4. We take 𝑁 = 2. We
do not have any information for the gray region. The upper curve, 𝑓1(𝛼), is the transition line
obtained by the Mean-field approximation.
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Qualitatively, the approximation reflects the existence of two behaviors when 𝜌0 ∈ (0, 1). On
the first one, 𝜌𝑡 tends to 1 when 𝑡 tends to infinity. On the second one, 𝜌𝑡 tends to 0 when 𝑡 tends
to infinity. However, from the MFA if 𝛼 > 1 − 𝛽 then 𝜌𝑡 → 1 when 𝑡 → ∞ for 𝜌0 ∈ (0, 1);
which do not agree with Theorem 1. Figure 6 illustrates the transition line, obtained by the MFA.

It is assumed that mean field models are essentially trivial. However, even the mean field
models can exhibit surprising behavior[19]. As we are dealing with the influence of the neigh-
borhood at PCA, maybe a mean field interaction[20] could be more appropriate to apply to our
study.

Here, we will need to define a finite space with periodic boundary conditions, Z𝑛 the set of
remainders modulo 𝑛, where 𝑛 is an arbitrary natural number. Let us consider the set of states
Ω𝑛 = {0, 1}𝑛. We call elements of Ω𝑛 periodic configurations. The periodic configurations are
finite sequences of zeros and ones, now we imagine these sequences to have a periodic form. For
each 𝐶 ∈ Ω𝑛 de define |𝐶| = 𝑛.

We are interested in the case when 𝑝 < 0 < 𝑞. Thus, we performed the simulation of the
process with F(−1,1), where the system has |𝐶| = 200, and the component of position 100 starts
on state 1 and the others on state zero. On Figure 7 we illustrate the action of F(−1,1) when (𝛼, 𝛽)
belongs to the set {(1, 1); (0.8, 0.8); (1, 0.3); (0.3, 1)}. The case 𝛼 = 𝛽 = 1 is the deterministic
evolution of the PCA.

The computer simulations suggest that when 𝑝 < 0 < 𝑞 and for 𝛼 and 𝛽 sufficiently close to
one, the process converges to an invariant measure which is not a convex combination of the
measures concentrated on the configuration, with all the components are at the same state. Still
in this direction, what is the speed at which the process will converge to this measure? Another
question is: will the ones always “spread out” throughout the system?

7 Open problems
We conclude with several open problems.
At this work, we have explored the effect of the neighbor’s position on the dynamics of a

class of one-dimensional PCA. The main results confirm that its relevance. According we know,
this is one of the first formal results in this direction. It brings a set of questions, we quote some
of them.

Problem 1. To the class of PCA that we have studied, what happens if we take a uniform initial
distribution?

Theorem 4 establishes two possible regimes(described by (A.4) and (B.4)). So, we get a
region for which we do not have any knowledge for a given 𝑁 value.

Problem 2. Is there another intermediate regime instead of that present by (A.4) and (B.4) ?

Theorem 2 and item (B.4) consider 𝛽 < 𝑓𝑁(𝛼). Clearly, for a fixed 𝑁 this region is non
empty. Moreover, fixed 𝛼 and given 𝑁 < 𝑀 we get 𝑓𝑁(𝛼) > 𝑓𝑀(𝛼). So, the region 𝛽 < 𝑓𝑁(𝛼)
decreases when 𝑁 increases.

Problem 3. Is it possible to obtain qualitative compatible versions of Theorem 2 and item (B.4)
not dependent on 𝑁?

The impact of neighbors at PCA on dimensions bigger than one needs attention.

Problem 4. Is it possible to built a PCA with dimensions greater than one in which dynamics
are driven by the location of the neighbor?
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Figure 7: Four space-time diagrams for F(−1,1). In each Figure, we took |𝐶| = 200 and
𝑡 = 0, . . . , 50.
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